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ABSTRACT

Energy absorbing mechanisms in sand subjected to one-dimensional

compression are reported. For pressures below crushing of the grains,

a granular medium of equal radii elastic spheres in a face-centered cubic

array is analyzed. Expressions are obtained for the axial stress-strain

curve, constrained modulus, coefficient of earth pressure at rest, and

relationship between absorbed energy and input energy for one cycle of

loading. The energy absorbed as a result of crushing is considered by

analyzing statistical relationships between changes in grain size distribution

curves and the new surface areas created. An apparatus is described which

has the capability of maintaining conditions at zero radial strain under in-

creasing axial stress. The lateral stresses developed under these conditions

are measured. Preliminary experimental results are presented for one

sand which show the variation of the coefficient of earth pressure at rest

and the stress- strain relationships with initial void ratio, overconsolidation

ratio, and strain rate. A correlation of theory and test results is presented.
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CHAPTER 1

INTRODUCTION

1.1 Object and Scope

The object of this study is to define the mechanisms by which

granular materials such as dry sands and gravels absorb energy when sub-

jected to an applied state of stress. The study therefore is an investi-

gation of the stress-strain behavior and hysteresis effects in cohesion-

less granular materials subjected to increments of stress extending into

the higher pressure ranges.

The usual concept of a stress-strain relationship for elastic

solids does not apply to granular materials. The ideal group of materials

classified as elastic solids exhibit a linear s cress-strain relation. In

such a material the stress-strain properties may be described by elastic

constants. A granular medium such as soil is entirely different how-

ever, in that constants cannot be used to describe the stress-strain

properties of the medium even if the material properties of the parti-

cles and the packing arrangement are known. The stiffness of a granular

medium is not only dependent upon the material composition of the parti-

cles and the packing arrangement (relative density), but the stiffness

is also a non-linear function of the stress tensor. The dependence of

the stress-strain relation can be illustrated by considering various

states of stress on the cylindrical sample of soil shown in Fig. 1.1.

Curve 1 shows an axial stress-strain curve for a sample of soil which

was compressed hydrostatically with va M ar" The concave upward stress-

strain relationship is a typical relationship because as the soil be-

comes denser the resistance to volume change increases. Curve 3 illus-

trates an axial stress-strain curve for a sample under constant radial
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stress which is deformed by increasing the axial stress. The resulting

stress-strain curve is concave downward indicating that the resistance

to deformation increases at a decreasing rate. This behavior is typical

where the primary resistance to deformation is a shearing resistance

rather than a resistance to volume change. Curve 2 is a one dimensional

compression curve where the axial stress is increased under the condi-

tions of zero radial strain. In this situation the lateral stresses are

not controlled and are statically indeterminate. The concave upward

stress-strain curve shows that the resistance to deformation in one

dimensional compression is primarily a resistance to a change in volume.

These examples illustrate the various types of behavior manifested by

soil and demonstrates the dependence of the stress-strain relation on

the applied state of stress. The general stress-strain relations in a

granular material are therefore very complicated, especially when the

shearing stresses predominate as in curve 3 and particles rotate, slide,

and a rearrangemeit of particles is constantly taking place.

In order to eliminate the variables introduced by gross re-

arrangement and other uncertainties which occur under large shearing

stresses, this study was limited to those cases where the shearing

stresses are small with respect to the normal stresses. The behavior

in one dimensional compression has been emphasized because this case is

of practical importance to the Air Force. The one dimensional case is

a reasonable representation for an important group of protective construc-

tion problems; those where the air blast induced ground shock is of pri-

mary importance. In this condition of loading the radial extent of the

loaded area is large in comparison to the thickness of highly compressible

surface soil and near surface unconsolidated rock strata. Under this

condition of loading, the strata are laterally confined such that the
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only displacement that can occur is in the direction of stress wave pro-

pagation.

A typical stress-strain curve for a granular material such as

sand subjected to static loads in one dimensional compression is shown

qualitatively in Fig. 1.2. This curve shows that the stress-strain be-

havior and consequently the energy absorption mechanisms are dependent

to a large extent on the magnitude of pressure.

The behavior in the very low stress ranges, (Region 1, Fig.

1.2), reflects a rearrangement of the grains and the stress-strain curve

is concave downward. The energy absorbed in the compaction process is

of course non-recoverable; however, if the pressure subsequently becomes

quite large this energy loss is quite small compared to losses caused

by other phenomena.

As the load is increased the particles begin to lock together

and become a stable matrix of elastic particles (Region 2). In this

higher stress region the strains that take place in the material are due

primarily to the deformation of the particles at the points of contact.

There is of course some rearrangement continuing in this region but

studies indicate that the rearrangement is not significant at this pres-

sure level. The behavior in this region is essentially a non-linear

elastic behavior in that there is little permanent set resulting from

an increment of stress applied and removed within Region 2. This be-

havior can be analytically studied by means of the Hertz-Mindlin con-

tact theory which is discussed in detail in Chapter 3. A study of this

type was made on a face centered array of equi-radii spheres. A theo-

retical stress-strain curve was derived for the array of sphereF in

hydrostatic compression and the concepts were extended to obtain a
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stress-strain relationship for the array subjected to the boundary condi-

tions concomitant with one dimensional compression. It was found that in

one dimensional compression it is possible to have energy absorbed due to

friction at the contacts when no permanent strain results from a cycle of

loading. The question arises as to whether such a theory based on the

theories of contact stresses is applicable to soils because of the magni-

tude of the stresses and the small radii of the grains. Appendix A treats

this topic and shows that for the stress ranges of interest, namely those

in Region 2 prior to particle crushing, the contact theory is applicable.

For certain cases other than complete confinement with various amounts of

lateral deformation permitted, it was necessary to obtain numerical solu-

tions to the theory of granular media since a closed form solution was not

possible. Appendix B outlines the work carried out and the program coded

for a digital computer.

As the stress continues to increase to the neighborhood of one

to five thousand psi the contact forces become so large that the particles

begin to crush. The crushing is accompanied by a certain amount of re-

arrangement which is reflected in the concave downward stress-strain curve

shown in Region 3. Energy is absorbed in this range by the creation of

new surface area during crushing and energy is dissipated as heat due to

rearrangement of the new particles into a denser configuration. Both of

these mechanisms absorb energy which is no longer in the form of recover-

able strain energy.

As the pressure continues to increase, the particles lock again

and the curve again becomes concave upward as shown in Region 4, Fig. 1.2.

In general the stress-strain curve in Region 4 tends to follow the same

general pattern which took place in Region 2 before crushing except that
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the particles are smaller and more angular than before. There is evid-

ence however, which indicates that particles are continuing to crush

throughout Region 4. Chapter 4 considers the energy required to create

new surfaces. It is found that after crushing begins the energy absorbed

due to particle crushing seems to be linearly related to, the stress level.

Unfortunately, there are no data available in the literature

which can be used to fully corroborate the analytical conclusions sum-

marized above and presented in detail in Chapters 3 and 4. In order to

fill this gap in our experimental knowledge a series of exploratory tests

on smooth uniform sand in one dimensional compression were conducted to

provide a better understanding of the mechanisms by which sand absorbs

energy. The design and construction of a new testing apparatus was re-

4 quired to obtain the necessary data in the higher pressure ranges. The

design of the apparatus and the test results are described in Chapter 5.

The data presented in Chapter 5 show that energy can be absorbed

by sand in stress ranges below crushing with only very small permanent

strains resulting. This behavior is substantially the same as predicted

from the analysis of the medium composed of equi-radii spheres.
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CHAPTER 2

SELECTED SUNAM OF PREVIOUS WORK

It is not the purpose herein to make a thorough survey of all

of the important results reported in the literature which have contributed

to an understanding of the behavior of granular materials and soils. Such

an effort would be quite voluminous and an extensive report in itself. It

is the writers' understanding that Professor R. V. Whitman at MIT is cur-

rently preparing such a report, [2.37]. Furthermore, a very excellent

comprehensive summary of the state of knowledge, on the behavior of granu-

lar materials, up to 1957 has been made by Deresiewicz [2.11. The reader

is referred to these works for a comprehensive survey of the literature on

the behavior of soils.

The purpose of this chapter is to call attention to some of the

more recent findings which are important in understanding soil behavior

and also to point out some other works which, while not new, have been

somewhat overlooked in the literature. It is hoped that the few comments

made here will be useful to the reader as supplements to the two above

noted works.

2.1 Theories of Granular Media

There are many theories which have been developed in the past

to attempt to predict or rationalize the behavior of granular materials.

Soe of these have been based on the concepts of the theory of plasti-

city. Others have been founded on a study of spherical arrays such as

that smmarized by Deresiewicz [2.11.

A recent publication worthy of note is a sumary of Russian

contributions in soil mechanics by Klein [2.2]. This is primarily a

historical account of the development of the theory of granular media in
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Russia from 1917 to 1957 and includes little actual theory. Its major

contribution is that it provides an excellent bibliography of only Rus-

sian work (some 175 listings) in this area up to the early part of 1957.

Another survey of recent Russian york in soil mechanics was also con-

ducted by Drashevska (2.34] in 1958.

One of the most recent theories of soil mechanics developed

in Russia is that presented by Grigoryan [2.3]. He formulates a the-

ory vhich is presumed to be applicable for soils subjected to extremely

large pressures (in terms of thousands of psi). His theory suggests

that the behavior of a soil is dependent on two functions, one character-

izing the volume deformation of the medium and the other the properties

of the medium during shear deformation. It should be noted that the

most important difference betveen the Grigoryan model and the usual

plasticity theory is that here the volume deformation relationships be-

tveen the mean pressure p - -1/3 (ax + ay + az) and the density is Dot

assumed to be elastic (reversible): They are, however, connected by a

well defined relationship vhich is different for increasing and decreas-

ing pressure. This theory gives a loading and unloading stress-strain

curve similar in shape to Fig. 2.1. Grigoryan's theory is discussed in

greater detail in a later publication [2.41 and some inaccuracies in

the original work are corrected.

Some experimental work is presented by Alekseenko, Grigoryan,

et al [2.41 in support of the theory proposed by Grigoryan for granular

media. A series of TilT explosions was set off, and the soil behavior

was measured radially outvard avay from the blasts. The results seemed

to shov a definite linear relationship between the mean compressive stress

and the square root of the second stress Invariant. For average stresses
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less than 15 kgcm2 it was found that the second stress invariant could

be related to the average stress.

Another recent theory of soil mechanics has been presented in

a monograph by Geniev [2.5]. Here a theory for the plane motion of a

granular medium is formulated which is an extension of the work of Soko-

lovsky. The equations of motion consist of (1) two equations of equi-

librium (2) conditions for Coulomb boundary equilibrium (3) incompress-

ibility conditions and (4) conditions of convergence of the directions

of maximum velocities of shear deformation with the direction of lines

of slip. The application of Geniev's theory to the dynamic soil-struc-

ture interaction problem is currently under study at the University of

Illinois [2.35].

One theoretical treatment which is not too well known is that

developed by Oshima [2.6] wherein an attempt is made to specify in tensor

notation all of the contributing effects which should be included in a

theory of granular media. The approach has some merit in that an attempt

is made to present a consistent theory which encompasses the entire geo-

metry of the medium. Utnfortunately, while the abstractness presents a

convenient compact form for the theory, there is difficulty in obtaining

all of the terms in the significant tensors.

Katz and others [2.7 sad 2.8] have studied the propagation of

plane stress-waves in sand with a two-parameter exponential stress-strain

law, including hysteresis. Along a similar line Parkin has treated the

one dimensional wave propagation in sand in an attempt to explain the be-

havior measured by Whitman (2.15) in some experiments carried out in the

early 1950's. The subsequent discussions of the latter paper by Fulton

and Sendron [2.111, Selig end Vey [2.12), Whitman [2.131 and Parkin [2.1]
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are particularly interesting in siummarizing the current state of know-

ledge and problems associated with predicting the behavior of sand. An

investigation of the dynamic soil-structure interaction problem using a

discrete mass-spring model to represent the soil is currently under way

at the University of fllinois [2.36].

Some of the more recent papers in English on the application

of the theory of plasticity to the behavior of soils include (2.16 -

2.20). Theoretical studies of the stress conditions existing in tri-

axial compression have been formulated by Balla [2.21] and Hlaythornthwaite

[2.22).

2.2 Experimental Results

One result which is of importance to this study is given in a

paper by Allen, et al [2.231, which contains the results of a series of

tests on sand (Fig. 2.2). The particular significance of these tests is

that the pressures were extremely high (approximately 90,000 psi). The

sample was placed inside a steel cylinder to approximate conditions of

one dimensional compression. Unfortunately, the sample size was of the

wrong proportion for a one dimensional test (2.31 inches in diameter and

7.88 inches high) and the stress-strain behavior may very well be signi-

ficantly affected by the deformations of the container and side friction

effects. These results are of significance, however, in indicating the

general shape of the stress-strain curve in the high pressure regions.

Grigoryan used this general shape to support his theory of granular media.

J. M Roberts [2.24] has investigated the hysteresis character-

istics of an Ottawa sand with lateral confinement closely approximating

one dimensional conditions. Some 200 loading cycles vere carried out in
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a stress region below 50 psi. It was found from the hysteresis loops that

sand can absorb energy without having any permanent displacements. The

reason for this phenomenon noted by Roberts and more conclusive experi-

mental results, are given by the authors in the present report.

Studies on the one dimensional stress-strain behavior of sand

and quartz in the higher pressure regions were carried out by J. E. Rob-

erts and others at MIT [2.25, 2.261. Some of these data are analyzed in

Chapter 4 of this report in an effort to shed some light on the mechanism

by which sand absorbs energy in pressure regions of 5,000 - 20,000 psi.

Tests on the static and dynamic stress-strain characteristics

of sands in the low pressure regions have been conducted by Thompson at

the Ballistics Research Laboratory and the results have been published

in a series of short reports [2.27, 2.28, 2.29].

KJellman and Jakobson [2.301 investigated the influence of grain

shape and grain size on the behavior of granular materials incased in a

series of steel rings in an attempt to eliminate the side friction effects.

A triaxial compression apparatus was modified by Weissman and Hart (2.311

to study the damping capacity of granular soils as reflected by the bhys-

teresis loop. Wolfskill and Buchanan [2.32] discuss some of the aspects

of dynamic foundation loads supported by a granular soil. Other recent

work on dynamic triaxial tests includes that by Shannon, et al [2.33].



-114-

RMERENCES

2.1. Deresievicz, H., "Mechanics of Granular M4atter," Advances in Appl.*
ied Mechanics, Vol. 5 Academic Press, Inc., Nov York, Rev York,
1958, P. 2313.

2.2 Klein, G. K., *Pressure and Resistance of Granular (Cohesionless)
Media, Analysis of Retaining Walls and Subterranean Structures,"
Ch. 9 of Structural Mechanics in the U.S.S.R. 1917-1957 ed. by I.
M. Rabinovich, Pergamon Press, pp. 396-1426.

2.3 Grigoryan, S. S., "The General Equation of Soil Mechanics," Soviet
Physics Doklkady, Vol. 4, No. 1, Aug./Dec. 1959.

2.4 Grigoryan, S. S., "On Basic Concepts in Soil Dynamics," P314 Jour.
Appi. Math. and Mech., Vol. 24, No. 6, 1960, pp. 16014-1627.

2.5 Genieve, G. A., "Questions of the Dynamics of a Granular Medium"
(in Russian), Nauch. Soobsheh. Tsentr. Nauk-i. In-ta, Stroit.
Konstruktsii Akad. Str-va i Arkhitekt. SSSR No. 2, 1958.

2.6 Oshima, N., wDynamics of Granular Media" Ch. ,D-6 Memoirs of the
Unifying Study of the Basic Problems in Engineering Sciences by
Means of Geometry, Vol. I, ed. by K. Kondo, Gakujuts Bunkren Fukya-
Kai, Tokio, 1955.

2.7 Katz, S., and Ahrens, T. J., "Propagation of Plane Waves in Granu-
lar Materials, Part I," Tech. Report No. 1, Ballistics Research
laboratory, Contract No. DA-115-509-ORD-1009, Dec. 1959. -

2.8 Katz, S., and Woeber, A. F., "Propagation of Plane Waves in Granu-
lar Materials, Part HI" Tech. Report No. 2, Ballistics Research
laboratory, Contract No. DA-115-509-ORD-1009, Sept. 1960. -

2,9 Parkin, B. R., "Impact Wave Propagation in Columns of Sand," Ple-
port No. 114-2J486, The RAND Corporation, Nov. 1959.

2.10 Parkin, B. R., "Impact Waves In Sand: Theory Compared with Experi-
ments on Sand Columns," Proc. ASCE, Vol. 87, 53(3, June 1961, PP. 1-32.

2.11 Fulton, R. E., and Hendron, A. J., Jr., "Discussion: Impact Waves
in Sand: Theory Compared vith Experiments on Sand Columns," Proc.
AsoE, Vol. 87, No. sm6, Dec. 1961, pp. 69-73.

2.12 Selig, E. T., and Vey, X., "Discussion: Impact Waves in Sand: The-
ory Compared with Experiments on Sand Columns," Proc. ASCE, Vol. 87,
No. SM6, Dec. 1961, PP. 73-76.

2.13 Whitman, R. V., "Discussion: Impact Waves in Sand: Theory Compared
with Experiments on Sand Columns," Proc. A=C, Vol. 88, No. 530,
Feb. 1962, pp. 149-58.

2.14 Parkin, B. R., *Discussion: Impact Waves in Sand: Theory Compared
with Experiments on Sand Columns," Proc. ASCE, Vol. 88, No0. sic3,
June 1962, pp. 205-207.



-15-

2.15 Whitman, R. V., et al, '"he Behavior of Soils Under Dynamic Loading:
3. Final Report of Laboratory Studies,," Dept. of Civ. and San.

Engrg., M.I.T., Aug. 1954.

2.16 Drucker, D. C., Gibson, R. E., and Henkel, D. J., "Soil Mechanics
and Work Hardening Theories of Plasticity" Trans. ASCE. Vol. 122,
1957, Pp. 33&346.

2.17 Drucker, D. C., "Coulomb Friction, Plasticity, and Limit Loads,
Jour. Appl. Mech., Vol. 21, 1954, pp. 71-74.

2.18 Jenike, A. W., and Shield, R. T., "On the Plastic Flow of Coulomb
Solids Beyond Original Failure," Jour. Appl. Mech., Vol. 26, 1959,
pp. 599-602.

2.19 Kirkpatrick, W. M., "The Condition of Failure for Sands," Proc.
4th Intl. Conf. Soil Mech., 1957, pp. 172-178.

2.20 Takegi, S., Plane Plastic Deformation of Soils, Proc. ASCE, Vol. 88,
No. EM3, June 1962.

2.21 Balls, A., "Stress Conditions in Triaxial Compression," Proc. ASCE,
Vol. 86, No. SMa, Dec. 1960, pp. 57-84.

2.22 Haythornthvaite, R. M., "Mechanics of the Triaxial Test for Soils,"
Proc. ASCE, Vol. 86, No. SM5, Oct. 1960.

2.23 Allen, W. M., Mayfield, E. B., and Morrison, H. L., "Dynamics of a
Projectile Penetrating Sand," Journal Appl. Physics, Vol. 28, No. 3,
March 1957, PP. 370-376.

2.24 Roberts, J. M., "A Study of Hysteresis in Granular Soils," M.S. Thesis,
Massachusetts Institute of Technology, June 1961.

2.25 "Study of Soils Consolidated Under High Pressure," Report for the
Creole Petroleum Corp., Maracaiba, Venezuela, Massachusetts Institute
of Technology, Oct. 1959.

2.26 Roberts, J. E. and de Souza, J. M., "The Compressibility of Sands,"
Proceedings ASTM, Vol. 58, 1958, p. 1269.

2.27 Thompson, A. A., "The Relation of Seismic Energy Attenuation to the
Area Under the Stress-Strain Curve," Memorandum Report 1261, Ballistics
Research Laboratory, Apr. 1960.

2.28 Thompson, A. A., "A Comparison of the Dynamic and Static Stress-Strain
Curve in Sand Under Confined and Unconfined Conditions," Memorandum
Report 1262, Ballistics Research Laboratory, Apr. 1960.

2.29 Thompson, A. A., "Mhe Comparison of Strain and Kinetic Energy in a
Plastic Wave Moving Through Sand," Memorandum Report 1263, Ballistics
Research Laboratory, Apr. 1960.



-16-

2.30 KJellman, W., and Jakobson, B., "Some Relations Between Stress and
Strain in Coarse-Grained Cohesionless Materials," Bulletin No. 9,
Proc. Royal Swedish Geotechnical Institute, Stockholm 1955.

2.31 Weissman, G. F. and Hart, R. R., "The Damping Capacity of Some Gran-
ular Soils," ASTM Spec, Tech. Pub. No. 305, 45-54, 1961.

2.32 Wolfskill, L. A., and Buchanan, S. J., "Dynamic Stress-Strain Char-
acteristics of Granular Materials," Presented at National Conven-
tion ASCE, Houston, Texas, Feb. 1962.

2.35 Shannon, W. L., Yamane, G., and Dietrich, R. J., "Dynamic Triaxial
Tests on Sand," Proc. First Panamerican Conf. on Soil Mech. and
Found. Engrg., Mexico City, Sept. 1959.

2.34 Drashevska, L., "Review of Recent U.S.S.R. Publications in Selected
Fields oi Engineering Soil Science," .M.A. Thesis, Columbia Univer-
sitY, 1958.

2.35 Bedesem, W. B., Jennings, R. L., Das, Y. C., and Robinson, A. R.,
"Soil Structure Interaction and Dynamics of Shells," Interim Tech-
nical Report for Air Force Special Weapons Center, Contract AF29(601)-
4508, University of Illinois, Aug. 1962.

2.36 Ang, A., and Newmark, N. M., "Computation of Underground Structural
Response," Technical Supplement Report for Defense Atomic Support
Agency, Contract DA-49-146-XZ-o104, University of Illinois, March
1962.

2.37 Whitman, R. V., Nuclear Geoplosics, Part Two - Mechanical Proper-
ties of Earth Materials. 3203 (11) Draft (Unpublished) Prepared
for the Defense Atomic Support Agency, Washington 25, D. D., under
Contract Nos. DA-22-079-eng-224 and DA-49-146-xz-030.



"-17-

P,

P= f(d,dl)-

0L ,po = Initial M ean S tress

L p = f, (d) - do- Initial Density

U)
U)

di

Density, d-do

Fig. 2. 1 ASSUMED STRESS STRAIN CURVE FOR SAND
(after Grigoryan (Z. 3, 2. 4))

7

6-

5 Unloading

.4- Loading

37

U,.
U)

C0 0.1 0.2 0.3 0.4

Strain

Fig. 2.2 ACTUAL STRESS STRAIN CURVE FOR SAND
(after Allen, et al (Z. 23))



-18-

CHAPTER~

THEORETICAL APPROACH FOR PREDICTING THE STRESS-STRAIN

BEHAVIOR OF IDESE SANDS PRIOR TO PARTICLE CRUSHING

The stress-strain behavior of most materials in the stress

levels of interest may be assumed to approximately follov Hooke's law. If

the material in isotropic, the stress-strain relations can be completely

described by tvo independent elastic constants.

The discussion in the introduction to this report pointed out

the fact that constants could not be used to describe the stress-strain

properties of a granular medium. It vas shovn that it is possible to

obtain almost any stress-strain curve one desires by varying the stress

level, the state of stress, and displacement conditions at the boundaries.

Thus; there is no unique stress-strain relation for a granular medium.

This does not mean, however, that the stress-strain relations of certain

prescribed granular media under a given set of boundary conditions can-

not be found. The above merely indicates that, even for a greatly ideal-

ized medium such as a uniform array of equi-radii spheres, the problem

of defining a stress-strain relation for a granular medium is a boundary

valued problem in particulate mechanics and any analytical study of be-

havior under changes in stress must adequately take into account the bound-

ary conditions.

A mechanics approach for formulating the behavior of this type

of media must consider:

1. The equilibrium of each particle and the medium as a Vhole.

2. Certain geometrically admissible conditions on the deforma-

tions of the particles (i.e., a set of compatibility equa-

tions).

T. he relationships between the normal forces and normal dis-

placements and shearing forces and tangential displacements

at each contact point on a particle.



4. The bonmdary conditions on the medium.

The non-linear partial differential equations which result

from even the simplest model of equi-radii spheres are extremely complex

and closed form solutions can be obtained for only a fey cases. Since

some of the solvable problems, however, turn out to be basic ones, such

an approach has a great deal of merit in adding to the understanding of

the behavior of granular materials.

This chapter reviews the formulation of the theory of Granular

Media according to the ideas of Mindlin and Duffy and then presents a modi-

fication of the theory which is appropriate for one dimensional compress-

ion.

3.1 The Mindlin-Duffy Theory of Granular Media

3.1.1 Basic Theory

The theory developed here follows that first formulated by

Duffy, Mindlin [3.1, 3.2, 3.3) and their co-workers. The granular med-

ium is restricted to a face centered array of equi-radui spheres (Fig.

3.1). The face centered array was chosen primarily because this array

is one which provides for the densest possible packing. Hence, there is

no way in which compressible deformations of the medium can take place

as a result of rearrangement of the particles.

Consider the behavior of two spheres pressed together by a

normal force. According to the Hertz theory, if two elastic spheres,

each having radius R, shear modulus P, and Poissons ratio v, are mut-

ually compressed by a normal force N, the resulting surface of contact

is a plane bounded by a circle of radius

.(3.1)
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and the rate of change of the relative approach of the sphere centers,

a, with respect to the normal force N, is

C (3.2)

where C is defined as the normal compliance. Two spheres in normal con-

tact are shown in Fig. 3.2 while Fig. 3.3 shows the distribution of the

normal stress across the area of contact. A complete derivation of the

Hertz compliance and the assumptions and limitations of the Hertz theory

in regard to this study appear in Appendix A.

Suppose now that the system of like spheres, initially compressed

by a constant normal force N is subjected to a tangential force T which

acts in the plane of contact and whose magnitude increase monotonically

from zero to a given value. Because of symmetry, the distribution of

normal pressure remains unchanged. If it is assumed that there is no

slip* on the contact, then, because of synmetry, the displacement of the

contact surface in its plane is that of a rigid body. The solution of

the appropriate boundary-value problem, due to Cattaneo [3.4) and Mind-

lin [3.5], yields the tangential component of traction - on the contact

surface and the tangential displacement, b, of points in one sphere re-

mote from the contact with respect to similarly situated points in the

other sphere. The tangential traction is parallel to the applied force

T, axially synmetric in magnitude, and increases without limit on the

bounding curve of the contact area, Fig. 3.3. It is reasonable to sup-

pose that slip is initiated at the edge of the contact since it is

there the singularity in traction takes place in the absence of slip.

Since without slip this traction is syimetric, the slip is assumed to

* By slip we mean relative displacement of contiguous points on a portion
of the contact surface. We distinguish between Nslip" and the term
"sliding," which we reserve to denote relative displacement over the en-
tire contact.
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progress radially inward, covering an annular area. On this annulus it

is assumed, as a first approximation, that the tangential component of

traction is in the direction of the applied force and is related to the

normal (Hertz) component of stress a, already present, in accordance

with Coulomb's Law of sliding friction. Hence:

Ta fa (3.3)

where f is the coefficient of static friction and a is given by

a V 3- (a2 _ P2) 1/2 (3.3a)

2Xaa

Here p is the distance .from the center of the contact circle.

The distribution of T with slip is also shown in Fig. 3.3. Cattaneo and

Mindlin also predict the relation between the radius of the adhered por-

tion and the applied tangential force as

b a a(u - L) (3.4)

where b is as shown in Fig. 3.3 and where the tangential compliance at

the contact is given by

S2-V(1 - )(3.5)

Equation (3.5) holds only for the case of an increasing T with

a constant N at the contact. In the problems we will consider in this

paper, T and N are both increasing so the tangential compliances appropri-

ate for this problem are given in reference 13.61 as
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S 2 [f 9 + (1 -f 9) (1 - L-)"/3, 0< dN< i/i (3.6)SdT dT f lj - -

or

S 2 - V d
T-1-•-' >T -/ (3.7)

Let us now consider a face centered cubic array of uniform

spheres as shown in Fig. 3.1, where each sphere is in contact with 12

other spheres. A typical element of this packing is shown in Fig. 3.4.

If the coordinate system shown in Fig. 3.4 is translated to the center

of any sphere, Fig. 3.5, the 12 contact points would have the following

coordinates in terms of the radius of the sphere.

X Y Z X Y Z

1. 0 +WVf2 +,Wf2 - + VJ2 -A1V2 0

2. 0 -WR/2 + 'I2 8. oW'2 +IV2 0

o - W4)2 - V'2 +. W 2 0 + RA/-2

4. 0 + l/,2 - ,/V2 10. - ,V42 0 - ,-2

+ WI2 + R/12  0 11. - R/2 0 + 9142

6. - R/b2 -FV'T2 0 12. + R/42 0 - R142

There are two shearing forces and one normal force at each con-

tact point as shown on Fig. 3.5. In index notation it is convenient to

identify the various components of normal forces by the symbol, NiV,

where the subscripts correspond to the planes in which the components lie.

The two tangential force components at each contact are chosen to lie in

and normal to the co-ordinate planes, and are identified by TijV and Tk

respectively. At all contacts where the normal has direction cosines of

unlike sign the force components are further distinguished by primes.

Thus the components at the contact points 1 through 12 are:
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1. N T TNo To No
yE yz x V EZz

2. No T' To 8. N' To T'yz yz xx- XY V y

Ny Ty T xx2.. Nx T xz T

i. N' T T' 10. N T T- yz Yz xx - xz xz yy

N T T11. N' o T

6. N T T 12. N' To To
XY V EE XE XZ yy

Let us nov consider the equilibrium equations of a representa-

tive cube (Fig. 3 . 4 ) due to an arbitrary initial state of stress imposed

on the medium. If an increment in stress is added to the initial stress,

the forces on the faces of the cube will be increased by corresponding

increments dP j. Let us determine the unknovn increments of force at the

contacts between the spheres within the cube which result from the force

increments dP ij. If the stress increment in the medium is homogeneous,

then the contact forces will be equal at contacts having corresponding

positions on the surfaces of the spheres. The contact forces diametri-

cally opposed on each sphere are equal, thus only 18 of 36 contact forces

on each sphere are independent. Not only must the cube as a whole remain

in equilibrium under the action of the increments in applied force, dPig,

but each sphere and each portion of a sphere vithin the cube must also

remain in equilibrium. Since the portions of spheres in the cube are

acted on both by applied forces and by contact forces, the equations of

equilibrium relate the increments in applied forces to the increments in

contact forces. By writing equilibrium equations for various octants of

spheres in the cube as shovn in Fig. 3.6 it may be shown that there are

nine independent equations of equilibrium. These equations are the fol-

loving:
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4_. x, + W2 (dz+dN XY -dT + dT ) d + dP + dP

2. MTzz + W2 (dJ +41 - dT + dT ) dP +dP • +dP

y_. yz + W2 (d.,y, +dM -yT',Z + dy ,.) -yz + yM + yz xy

6_. •4dzz+2J2(dR,+dJ -dTz+dT. )- dPz+dP -d. 4dT' +22 (d., + d., - dT', + dT )- dP + dF + dPxx zx xy y Xx XY z

~. 4dT' + W2 (dN' + dl - dT' + dT ) - d.P + dP - dP (3.8)
yy xy yz XY yz yy yz zy

6. 4dT' + W2,(dN' + dl - dT' + dz)- -P + dP - dP

7. zdT - W2 (dN' + ' - dT' +dT' )- -dP + d-P + dP
Lxz X x XX XY ZX

8. 4dT -:?2i2(dN' + dN' - dT' + dT' z) -- dP + dP z+ dP
yy XY yz Xy yz yy yz y

2. 4dT - 212 (d' + dN' - dT' + dT'x --dP + dP + dP
ZZ yz ME yz ZZ MC X

The nine equilibrium equations given above are not sufficient

to uniquely describe the behavior of the medium since the problem is

statically indeterminate. A set of compatibility conditions are formu-

lated by giving consideration to the admissible displacements of the

medium which result from the incremental stresses. Let the components

of relative displacements of the centers of spheres be designated by

daii) d5ij, d5kk, to correspond, respectively, to the forces dNij,

dTij, dTkk (Fig. 3.7). We will require that the displacements of the

center of the spheres be single valued, i.e., the vector distance around

the closed path through the center of the spheres must vanish both be-

fore and after the medium is strained. Hence the sum of the relative

displacements of the center of these spheres around the closed path must

vanish. Expressions for this condition for all possible paths connect-

ing the center of a sphere in the medium yields 9 independent equations

of compatibility as follovs:

1. 402d =-d' + d + d6' + db
- zz yz zx yz zX

2. fd5+z" d(X - da' - d6 - dO'
Z. yz ZX yz L

" 2d8' =-da + dc +d8 + d8
Zz yz X yz zx
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4. l2db =-dca + da + db' + d5- xx x XY zx X

[2db da -da' -d5 -d8' (3.9)xx = X XY d • TX

6. [2d5' = da - da + d8 + d8-- xx ZX XY zx -V

7 4. -2db - da' + da + d6' + db
yy xy yz xY yz

8. 4f2d0 da - dC' - db - dO'
yy xy yz xy yz

4. ,2d5' =-da + da + db + d6yy Xy yz xy yz

The compatibility equations can be vritten in terms of force

increments by using the compliances

dOlj - C Jd6ij da'j = 0idJ'
ii ii ii i ji ii

d6j = S ijdTij d6 j - S'IJdT'j (3.10)

d~k- SkkdTkk d8 - S~kdT~k

Where the subscripts identify the contact. Thus Eq. (3.9) together with

Eq. (3.8) yield 18 independent equations containing the applied forces

Pij.# and 18 independent components of the unknovn contact forces, dNij,

dTij, and dTkk. Unfortunately, hoverer, these 18 equations are non-lin-

ear since the equations include the compliances and the compliances are

themselves functions of the contact forces. Consequently, a solution to

these equations is a very difficult problem and can be obtained only for

certain simple cases.

The incremental extensional and shearing strains in the array,

expressed in terms of the compliances, are

da 1 ¢daj + db% + d' + O )
ii ij ii

(3.11)

d71 (,dCj:- da'jj)

Likewise the applied force increments P,, in Fig. 3.4 are related to the

stress increments for a face centered array by
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Fij - 8R 2ij (3.12)

3.1.2 Application to a Hydrostatic State of Stress

One problem of interest which can be solved is that of a face

centered array subjected to a hydrostatic state of stress. Under this

state of stress we can obtain from symmetry the conditions that all norm-

al forces at the contacts are equal and all shearing forces are equal.

If we let

P = total force on the face of a differential element
0

N = normal contact force
0

T = tangential contact force

R - radii of spheres

the equilibrium Eqs. (3.8) reduce to

•4dT + 412d10 = dP 0  (3.13)

4dT - -d dl'
0 0 0

Adding Eqs. (3.13) and considering the initial condition of zero stress

yields the expected condition for the tangential force

T = dT a 0O o

Hence, the equilibrium equation becomes

dN 0 1 P0(-4d _. __ dl'3.•
o •J[2 (ol4

If a is the hydrostatic strain in any direction, Eq. (3.11)

yields

-1
de 1 dC9 (3.15)
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where dC% is the normal deformation due to cI1o and is related to dNo by

the normal complianceC

da 0 0d (3.16)

From the Hertz theory

C0 M 1 (3.17)
0 0ft

where sois the radius of contact defined by

ro3(l - V) N 0R 113(-8

Wy combining E9qs. (3.15), (3.16), (3.17) and (3.18), the incremental

strain may be expressed as

de 1/2 [(1-Y) 2 2/3 IL% / duo. (3.19)

Integrating Sq. (3.19) and considering zero initial conditions results

in

-2/3
[160v 4- a 02/3 (3-20)

It s hpul d be noted that Eq. (3.20) is also the equivalent of the first

stress invariant I, being proportional to the three halves power of the

first strain Invariant J.

It is of interest to compare the results of this theory with

some limited experimental results available in the literature. Kjellmar.

(3.7] carried out some tests on dry sand subjected to hydrostatic pres-

sure and measured the bitrains associated with the pressure. Table 3.1
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gives the variation of the first stress and strain invariants taken from

his experimental results. A plot of this is shown in Fig. 3.8. Also

shown is a plot of the exponential relationship indicated by the theory

discussed, which is fitted to the experimental curve at the 6 k/cm2

stress level. The behavior of the sand is not as stiff as the dense

packing theory indicates in the lover pressure regions while it becomes

stiffer than the theory predicts in the higher pressure regions.

The former seems reasonable in that in the lover pressure reg-

ion the number of contacts is not as large as the 12 assumed for a dense

state. Hence the real sand is not as stiff as the spheres. In the high-

er pressure regions, it seems reasonable to associate the stiffening

effect with the random size distribution of particles which differs from

the equi-radii spheres assumed in the theory. If the sand grains are

of different sizes, more than 12 contacts can be realized after the sand

has been compressed sufficiently to allow these contacts to be made.

This would tend to make the sand stiffer than the spheres. Furthermore,

while every attempt was made by Kjellman to minimize the effect, any

frictional resistance due to the testing apparatus would effectively

stiffen the measured stress-strain relations.

From the above discussion and development, it can be concluded

that the theory associated with the face centered array of spheres shovs

at least some qualitative correlation with the behavior of dense sand

subjected to a hydrostatic state of stress.

3.2 One Dimensional Theory of Granular Media

3.2.1 Monotonically Increasing Load

Let us now extend the theory of Duffy and Mindlin developed in

Section 3.1.1 to the solution of the stress-strain behavior of an array
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of spheres subjected to one dimensional compression. One dimensional

compression is defined as that state of stress resulting from the ajpli-

cation of a load in the vertical or z direction when the lateral strains

in the x and y directions are zero.

The radial symmetry of the one dimensional problem greatly

simplifies Eqs. (3.8) and (3.9). The representative cube now becomes

Fig. 3.9, and the forces on a sphere reduce to those shown on Fig. 5.1u.

From symmetry the following simplifications can be made for the forces

and displacements:

N = N' =N

N = N = Nzx = N'x = N2

-T =-T' =T = T' = Tyz yz zx 2x

T = T' T =T' = T +T' =0 (3.21)
xx xx yy yy zz zz

T = T' "0xy xy

P = P =P -P =P =P =0
xy xz zx yx yz ZY

xx yy H

a -Y a XY- aexy = xy 1 •

a = 1' = Ot oil' G
yz yz zx zx 2

-yz -yz ax 2 (3.22)

8 = 8' =6 =8' =8 =' = 0
xx xx yy yy Zz ZZ

8 = 8' =0
xy xy

Furthermore, the associated compliances now become

C C' =CCxy xy 1

- C' =C -C' ,c (3.23)
yz yz zx ax C2

S =S, -S S -Syz yz ax ax 2
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Using the above simplifications and considering symmetry the

equilibrium Eq. (3.8) reduce to

dRl + dT 42N2 +T2 T -dzz

(3. 24)

dN! + dN -dT =
1 2 2 7 dH

In a similar fashion the compatibility Eq. (3.9) reduces to

dQ1 - da2 + d62 = 0 (3.25)

wriere th,2 compliance Eqs. (3.10) now become

dC1 = C dN1

da 2 = C2 dN 2  (3.26)

do2 = S 2dT2

Substituting Eqs. (3.26) into Eq. (3.25) yields

C1dNI - C2dN2 + S2dT2 = 0 (3.27)

Equations (3.24) and (3.27) are sufficient to describe the be-

havior if a granular mediu subjected to given vertical and lateral forces

P and •H' If, however, only the vertical force is known and the lateral

force musL also be determined, a further condition is necessary. This

condition naturally comes from the lateral strain relationship.

Due to symmetry Lhe lateral strain 4, determined from Eqs. (3.11)

reduces to

d - du 1 (3.28)
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orCd1
dE = Cd 

(3.29)
H 2R

Thus the behavior of a face centered array of spheres subjected

to a vertical force P and restricted to symmetrical lateral deformations
zz

can be obtained from a solution to the following equations:

dN + dT '2
2 2 T= pz

dli + dN -dT '12
1 2 2 - dPH 0

(3.30)

CI S21 2 o
-dN - dl + -dT = 0

Ca 1 2 CO~ 2

dN-2Rde Rd=I = CI

1 C 1

For the case of interest here, namely one dimensional compress-

ion, we require EH to vanish for all loadings. For this particular stress

state and zero initial conditions, we obtain N1 = 0 and Eqs. (3.30) re-

duce to

dN2 + dT 2 dP (3.31a)
d2 2d T zz

2- 2 -d T H = 0 (3.31b)

S 2
dNl - -•dT 0 (3.31c)

2 C 22S2

where the expression for - is obtained from Eqs. (3.6) and (3.7) as:
C 2

s2 dN a 2  2N) T2 -1/31

k f 2he ( -f )( (3.32a)

where
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k 2-V (332b)

1 271-7V s*~

The compatibility Eq. (3.31c) states that

d12 = "2

Hence for the one dimensional case Eq. (3.32) reduces to

da2 C~dN

de - dU2 - .ZS (3533)
zz R R

It should be noted that Eqs. (3.31) are coupled non-linear

differential equations because of the compliances in the third equation.

The vertical strains c associated with the behavior of thiszz

medium can be obtained from Eqs. (3.11) as

de (dC2 + d) (3.34)azz 2R 2-2

For the solution of Eqs. (3.31), let us consider first the com-

patibility Eq. (3.31c). Substituting Eqs. (3.32) into Eq. (3.31c) yields

after some rearrangement of terms

dT2 1-klf T2

dN2 k1 M2

Introduce now the new variable

Nf- (3.36a)

N2

and
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N 2 = N2f - T2

dN2
9 + N2 (3) Z2dZ = fN2 2dT2

or

dT2
dT2 = f 3 -3 2 dN (3 .36b )

Using Eqs. (3.36), Eq. (3.35) can be transformed into the fol-

lowing form.

L d 2
2 N -(3.37)Z2+K2 2

where
1-k f

2 77F3 (3.38)
k1

Integrating both sides results in

in N2 AlnA-3/2ln (Z2 +K 2 )

or
N2 -3/2

- = (z 2 + K ) 
(3.39)

A 2

where A is a constant of integration.

From Eq. (3.36a), Eq. (3.39) becomes

N2 T2 2/3 K 2 -3/2S=["- ) + 2](3.4o)

Equation (3.40) is the general solution to Eq. (3.31c) and a

particular solution may be obtained by evaluating the constant of integration
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A. Since we are interested in the initial conditions Pz= N = T = 0,
zz 2 2

one is inclined to evaluate A from these conditions. While this is a

true boundary condition, a singularity point occurs at the origin. The

equation is, however, well behaved at other points and the following

tecnnique will be used to evaluate A.

Imagine a small hydrostatic state of stress initially holding

the spheres in contact before the one dimensional state is imposed. This

hydrostatic stress produced no initial tangential force at the contacts

but iL does cause a normal force of N = N
2 o

From Eq. (3.40)

N -A(f•' + K2)-3/2

or solving for A, the constant of integration

N
A 0 (3.41)

(K2 + f2 3 F2

Substituting A into Eq. (3.40) yields after some rearranging

and taking into account Eq. (3.38).

T2 02i /1 (NO 2/3 _i + 13/2
T = 2 [1 LN l 1) k (N.42)

A plot of a family of curves representing Eq. (3.42) with var-

ious values of the initial hydrostatic stress N is given in Fig. 3.11.

The paths of loading are indicated by arrows on the curves. For conven-

ience the coefficient of friction f was taken as 0.3 and Poisson's ratio

v as 0.2.
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If an initial hydrostatic stress is imposed we can determine

the value of N2 when the sliding occurs. For this condition we see that

from Eq. (3.42)

_ [ ) -1 + 1 = 0

Rewriting and taking account of (3.32b) yields

N
N0 (3.43)2 fL--Y p

The reader will recall that we were initially interested in

defining the relation between N2 and T. for a granular medium in a one

dimensional state of stress which was loaded from an unstressed condi-

tion. We noted that the solution contained a singularity at the zero

stress and it was necessary to provide an initial hydrostatic stress

N to hold the spheres in contact when loading. If we now allow N to0 0

approach zero we obtain the solution desired.

On investigating Fig. 3.11 or Eq. (3.42) it is clear that if

one dimensional loading commences from a completely unstressed condition

(N = 0), the relation between N2 and T2 is that of a straight line with

a slope of 11f. Thus, the relationship between N and T for a face
2 2

centered array subjected to one dimensional compression is

T2 = fN2

This means that sliding (differentiated from slip in Section

3.1.1) at the contacts occurs immediately on initiation of loading. This
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is extremely important in that the theory developed to date along the

lines of Mindlin, et al, does not allow sliding at the contacts. The

authors, however, will show in the following that the stress-strain rela-

tion ships in the one dimensional granular medium can be described mathe-

matically even though sliding occurs throughout the application of a

monotonically increasing load.

From compatibility, even in the case of sliding, the geometri-

cal relationship still holds for the displacements at the contacts, i.e.

da2 - d82 M 0 (3. 4)

It should be clear, however, that the tangential displacement

52 is no longer related to the tangential contact force T2 by the tangen-

tial compliance S2 because of sliding at the contacts. The tangential

displacement is now made up of two effects, a sliding effect and a con-

tribution due to slip. On the other hand, the normal forces and dis-

placements are still connected by the compliances.

Furthermore, since Eq. (3. 4 4) is a geometrical relationship,

it holds as well for total displacements in the problem at hand. Hence,

a2 - 52 (3.45)

The vertical strain Eq. (3.33) is also geometrical and can be

used to obtain the strain for the medium.

dQ2 C~dl

de _C 2 -C2 N2 (-6
zz R R

Next we note that the equilibrium Eqs. (3.31a) and (3.31b),

which were originally written in terms of differential stresses, also

hold for total stresses. Hence
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N2 +T2 zz (3.47a)

N T 42 (.4bN2 -T 2 " (3.4TH)

We have already determined that N2 and T2 are connected by the coefficient

of friction throughout the entire loading, i.e.

z 2 - T2= 0 (3.47c)

The behavior of a granular medium of face centered packing

subjected to one dimensional compression can now be described by Eqs.

(3.44), (.54), (3.46), and (3.47).

Equations (3.47) may be combined to eliminate T resulting in

N (1+f) = 42 Pz (3.48a)2 Z2

N2 (l-f) " 42 (3,4)
2 7 PH~

In theoretical and applied soil mechanics a quantity of major

interest in one dimensional compression is K , the ratio between the hori-

zontal and vertical stresses at rest. From Eqs. (3.48) this ratio is

clearly

PH 1 (1-fKo z - " "- ) (3.49)
0 P = 2  1+f

zz

Some indication of the variation of K with the coefficient of friction

f is shown in Table 3.2.

Let us now determine the strains resulting from one dimensional

compression. The substitution of Eq. (3.2) into Eq. (3.46) yields
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de 21-I3R -) 5 -1 dN (-0zz 2 (3.O)

Combining Eqs. (3.50) and (3.48a) and noting from Fig. 3.9 that

Pz__z (3-51)zz= 8R2

gives 2/3 -1/3

zz = [;[ +f) [3/8 ] dz (3.52)

Integration of Eq. (3.52) yields

ez [ cl-v) (3) 42]3 2o(353
4zz = [ (l+f)( 2z (3.53)

An interesting result of Eq. (3.53) is that the stress-strain

behavior is independent of the radii of the particles. A comparison of

the stress-strain curves for hydrostatic and one dimensional compression

shows that the curves are similar in shape, but turn up at different

rates. The ratio of the one dimensional strain to the hydrostatic strain

at the same level of stress, azz, is a ratio of Eqs. (3.53) to (3.20),

which reduces to

zz 2 "(3.54)
o 0 (1+f)23

ValueLof f of 0.1 and 0.2 give values for ez/£O of 1.88 and 1.77, res-

pectively. This indicates that the hydrostatic and one dimensional stress-

strain curves are related as shown in Fig. 3.12.
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3.2.2 Unloading Cycle

When the medium is loaded the tangential forces tend to resist

the sliding motion. For unloading the tangential forces tend to resist

the sliding movement 'which is now in the opposite direction. Hence, the

tangential forces reverse their direction on unloading. These two cases

are illustrated schematically in Fig. 3.13. The normal and tangential

forces are still related by the coefficient of friction; only now the

direction of the tangential force is changed.

The new equilibrium equations become

N-T -[2
2 2 ~zz

(3.55)

N + T 42
2 2T H

where

fN2 - T 2 0 (3.56)

Consider the medium to be loaded from 0 to aFig. 3.14

according to Eqs. (3.53). If equilibrium Eqs. (3.55) become valid at

the instant e z begins to decrease from e zthen a zzwill decrease in-

stantaneously from a zzto some value a z* At the end of loading N 2 and

y are related by

a (1+f) (3-5)
az N 2 [21,

2

whereas the stress a zzis related to the contact forces by Eqs. (3.54)

and Eq. (3.51) by
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' 2 (l-f)

S - 2 2(3.58)

the relation between a and a at the instant where e Just begins

to decrease when the value N2 has essentially the same value while the

shearing stress has switched directions is

' * 1-f
(DV) (3.59)

zz zz 1+f

Combining Eqs. (3.55), (3.51), (3.46) and (3.2) yields for unloading

de .1/2 [(1-v) 42 [3/8 -a i] da (3.60)
z L zzz

which by integration becomes

[(1•) 42/23 2V3
zz = L (-f) 32 2 ozz (3.61)

The entire stress-strain history for one cycle of loading in
.

one dimensional compression is shown in Fig. 3.14 in terms of a andzz

azz. The derivations above are based upon the assumption that the tan-

gential contact forces immediately reverse directions when unloading

begins. This assumption is not quite true, however, since each sphere

must exhibit a small elastic tangential displacement before the tangen-

tial forces can change direction. This effect however, is small with

re spect to the tangential displacement due to sliding, and was neglected

in the analysis. Due to the above assumption, the stress-strain curve

reflects a vertical drop in stress from A to B without any change in
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strain. If the small elastic tangential displacement due to slip were

accounted for, the stress-strain curve would not have a cusp in it at

B, and would follow the dotted line shown in Fig. 3.14.

The stress-strain behavior shown in Fig. 3.14 exhibits an

energy loss after a cycle of loading and unloading but has no residual

strain. Hence, this medium can absorb energy without any permanent

displacements.

3.2.3 Energy Absorption

The amount of energy absorbed by the medium on loading and

subsequent unloading can now be determined.

The energy E1 required to load up to an applied vertical stress

of p1 and the strain of e1 is

E1 4 a zz dzz
0

(3.62)

4 5/2
E1 = (l+f) c1

The energy taken out of the medium E2 during unloading back to

zero from a stress of a2 and strain e1 is

E2 4 • (1-f) 5/ (3.63)

Thus, the energy lost is

6E E -E 8 5/2

1 - 5 1 (3.64)



-42-

Likewise the ratio of the energy loss to the energy input is

LE 2f (3.65)

Thus, a very significant property of the one dimensional stress-strain

curve is that the per cent of energy absorbed due to loading and unload-

ing is always constant for a material and depends only on the coeffici-

ent of friction at the contacts. Hence, the ratio of the area between

the loading and unloading curves to the area under the loading curve is

a constant given by Eq. (3.65). The per cent energy absorbed for var-

ious coefficients of friction is given in Table 3.2.

In sumnary it should be clear how the contact forces and en-

ergies associated with this medium are connected. The work done by the

normal forces during deformationf N2 da 2 is stored in the form of re-

coverable strain energy. On the other hand, the work done by the tan-

gential forces T2 d62 is a nonrecoverable energy and is dissipated as

heat into the medium. As seen from Table 3.2 this energy loss during

one cycle can be quite significant. In fact, with a coefficient of

friction of 0.15, the dissipated energy is 26.1% of the energy put into

the system.

3.3 Equivalent Discrete Mass Model for One Dimensional Static and Dynamic

Behavior

In recent years, an increasing effort has been devoted to study-

ing the static and dynamic behavior of soils using discrete mass-spring

models. These models have taken many shapes with various contributions

from models such as the standard Voigt and Maxwell models. These model
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studies have been particularly useful in wave propagation studies, such

as the work of Smith and Newmark (3.81. The dynamic equations of motion

can be integrated numerically with a digital computer using the P-method

[3.91 and it is a fairly straightforward approach to modify soil parame-

ters or spring stiffnesses as the need arises.

As might be expected from such an approach, there are certain

aspects of the soil behavior which escape the mass-spring model. Part

of this inaccuracy is due to the discreteness of the system and part can

be attributed to choice of the model itself.

A study of the problems associated with the choice of various

models for investigating the propagation of stress waves in a one dimen-

sional medium has been carried out by Murtha 13.10J.

In spite of the inherent difficulties associated with the use

of models, there are some cases where the model is the only hope and in

fact can be a very valuable tool. For that reason the authors would

like to suggest a one dimensional model which seems to exhibit the be-

havior expected of dry cohesionless sand, and is based upon the theory

presented in Section 3.2.

If a pressure on the surface of the earth extends over a large

enough area, it may be reasonable to consider soil completely confined.

If this is valid and if the soil composition is similar to sand, the one

dimensional behavior discussed herein may very well be a good approxima-

tion to the in situ soil behavior.

3.3.1 Horizontal Model

Figure 3.15 gives a model representation of the sphere system

developed in Section 3.2. This model yields the same stress-strain cur e



as the spheres for a static load as the load increases or decreases, and

the equations of equilibrium in the limit approach those of the spheres.

The model consists of non-linear spring elements and Coulomb damping ele-

ments which dissipate energy in the same way as the spheres. The reason

that it depicts horizontal behavior is that there are no initial stresses

in the model before the load is applied. Such an assumption might be

reasonable for a vertical column if the weight of the soil can be neglect-

ed compared to the applied stresses.

3.3.2 Vertical Model

The vertical model is slightly more complex than the horizontal

one in that the weight of the material produces initial stresses in the

model. Since the stress-strain curve for the material is non-linear, the

stiffness is a function of the stress, and consequently, a function of

the height of overburden. The overburden pressure increases linearly.

with depth and it can therefore be incorporated in the equations of mo-

tion.

A vertical model which includes the initial stresses due to

the overburden of the material is given in Fig. 3.16. It includes a

change in stiffness associated with the increased initial stress and fol-

lovs the stress-strain behavior consistent with the analysis of the

sphere medium in Section 3.2.
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TABLE 3.1 VARIATION OF STRESS AND STRAIN INVARIANTS

(From KJellman [3.71)

S(o. + a2 + a) 6v/v - (c + 2 + E1 = u/
3 /cm 2  3 1 0 -2i -2l/

k M2 lO-2 in/.in. 10o2 in/in

1 0.12 0.04

2 0.24 0.08

4 0.38 0.13

6 0.47 o.16

8 0.54 o.18

10 o.62 0.21

IL 0.69 0.23

= First stress invariant

J = First strain invariant
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TABLE 3.2 EFFECT OF THE COEFFICIENT OF FRICTION ON
ONE DIMENSIONAL STRESS-STRAIN BEHAVIOR OF
FACE CENTERED ARRAY OF SPHERES

f K nE/E 1 x 10U4

1 - f 2f x 100

0 0.5 0

0.05 0.45 9.5

0.10 0.41 18.2

0.15 0.37 26.1

0.20 0.33 33.3

0.25 0.30 40.0

0.30 0.27 46.2

f = coefficient of friction at contact points

0 = coefficient of earth pressure at rest, pHPz

E x 100% = precent energy absorbed due to loading and unloading
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Fig. 3.9 UNIT CUBE OF A FACE CENTERED CUBIC ARRAY OF EQUAL
SPHERES SUBJECTED TO INCREMENTAL FORCES IN ONE
DIMENSIONAL COMPRESSION
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'Fig. 3.13 SCHEMATIC REPRESENTATION OF THE DIRECTION OF THE
CONTACT FORCES WHEN LOADING AND UNLOADING UNDER
ONE DIMENSIONAL COMPRESSION
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CHAPTER 4

EFFECT OF GRAIN CRUSHING ON THE BEHAVIOR OF SANDS

4.1 Introduction

Typical stress-strain curves for a granular material such as

sand subjected to static loads in one dimensional compression are shown

in Figs. 4.10 - 4.14. The general shape of these curves has been quali-

tatively discussed in Chapter 1. The purpose of this chapter is to make

some evaluation of the energy absorbed by the sand in the pressure ranges

where crushing of the grains takes place. One should note that this is

only one of the mechanisms by which the sand absorbs energy' however, en-

ergy absorption in this region can be very significant.

The energy absorbed by crushing will be evaluated by determin-

ing the new surface area created as a result of crushing. The increase

in new surface area will be determined from a statistical evaluation of

the change in the grain size distribution curve for each pressure range.

Since new surface area can be related to energy absorbed in the crushing

phenomena, then energy absorption due to the creation of new surfaces

can be related to the changes in the grain size distribution curve. The

results of this analysis led to additional studies of stress-strain

curves for sands in the crushing region, which showed that the total en-

ergy absorbed due to particle crushing is linearly related to the stress.

4.2 Energy Absorbed Due to Crushing

4.2.1 Statistical Evaluation of Grain Size Distribution Curve

Since the change in the grain size distribution curve for a

sand is a measure of the change in the particle sizes, and consequently,

the change in the surface area of the particles, it is also a measure
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of the energy absorbed by the sand due to crushing. Since each group

of particles is in some sense a random accumulation of these particles

and, furthermore, since the crushing of the particles will tend to oc-

cur in a somewhat random fashion, it would appear that an investigation

of the statistical distribution of the particles and certain geometric

parameters is required.

To follow this thesis, the concepts presented by Orr and Dalla-

valle [4.1, 4.2j will be followed. It will be shown how certain statis-

tical measurements of a group of particles may be used to obtain useful

parameters which characterize the distribution of these particles.

If the particles are all spheres (or very nearly so) the aver-

age surface area S may be computed from the mean linear dimension d5

Hence

2
s 9d (d) 2 (4.1)

where

f = frequency with which a particle diameter d occurs

n - total number of particles (n-if)

Likewise, the mean volume V is

V as x (Lfd d3 (4.2)

If due allowance is made for weighting of size and frequency,

then better statistical averages would be

2I
s'.((E•d. sd 1 2 (4.3)



-66-

n v (4.4)

where d' and d' are denoted the mean surface and mean volume diameters,
s v

respectively. If the particles are not spheres, then suitable correc-

tion factors called shape factors must be used; i.e.:

S" E (fd\ 2 2
s = a( --_) = a do (4)B\n s 8

V11  a = Q d,3 (4.6)v n v v

Here a and CX are the surface-area and volume shape factors, respec-s v

tively. Equations (4.5) and (4.6) are the correct equations to use if

the particles are irregularly shaped.

Some typical values of a. and CX taken from (4.21, p. 27 are:s V

Z a

Cube 6

Sphere 9 x/6

White Sand (smooth) 2.1-2.6

Filter Sand (smooth) 2.7-2.9

Crushed Quartz 2.1-2.5 0.14-0.28

In general, it should be noted that while there is a somewhat large varia-

tion in a and aV, studies have shown that the ratio (I /a is usually ins 5 V

the range of 6 to 7 and closer to 6.

It is sometimes of interest to determine the specific surface

area S defined as the surface area per unit volume of the material, orV

sometimes the surface area per unit weight Sw. If the particles are all

spheres, these turn out to be
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S (64.7)
v d

sS

where P is the density and d is a diameter characteristic of specific

surface areas as shown in Eq. (4.1).

By investigating Eqs. (4.3) and (4.6) it is seen that these

equations weigh heavily in favor of larger particles. This is good for

volume or mass averages, but for surface areas the finest particles be-

come more significant. Hence the surface area computed by these equa-

tions is too low. To overcome these effects and to obtain a better

statistical representation, the following procedure is useful.

Let y represent the volume or weight fraction of all particles

measured having a particular diameter d. Then

. fd= (4.9)

and
Zfd14

d = Lyd = ____ (4.10)w Efd3

where d is a mean weight or volume diameter of the distribution. Itw

should be noted that this diameter is larger than that calculated from

Eq. (4.4), since the contribution of the larger particles is emphasized

by it.

Nov let the weight specific surface be denoted by S' and the
w

specific surface be denoted by S . Then
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IZfd3S '

s,,- £8s:, - w (4. 1i)Ltd'

From Eq. (4.8) we have

6 6Lfd3 (4.12)
8s pSw •pfd3S, =

Since S' = 6/pd there results
V

d Lfd
3

sv - (•
Efd

The usefulness of Eq. (4.13) is that it eliminates the use of

shape factors. Equation (4.13) could have also been obtained by divid-

ing Eq. (4.6) by Eq. (4.5). Hence d is the diameter to use to obtain
sy

the surface area per unit volume and this quantity is merely 6/dsv.

Let us now consider the frequency of an occurrence. Thus far

we have been dealing with measures of a central tendency of an event

happening; however, in most cases, the particle size distribution will

be skewed in the direction of increasing size. (Or at least this is

what is to be expected from a random sampling of particles). These

distributions can be normalized, however, if the size is plotted logari-

thmically. Thus the frequency f with which a particle of diameter d

occurs is:

f En ep d -in M]
4, .92 a 9(4.14)

where

M - geometric mean diameter

ag- geometric standard deviationg
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These are defined by

in M = d) (4.15)
n

ln( d -in M)2  (4.16)

As will be seen later, these quantities can be obtained easily

by graphical means from the grain size distribution curve. Furthermore,

these quantities can be related to the other statistical dimensions as

follows where the logarithms are to the base ten:

log d' 2 = log M2 + 4.605 log2 a (4.17)s g

lo; d'3 - log M + 10.362 log2 a (4.18)

v 9

log d6, - log M + 5.757 log2 a (4.19)

Also if

d - mean diameter of distribution
a £fd4

d - mean weight or volume distribution - -4

V Lfd3

there results

d = log M + 1.151 log2 a (4.20)a g

d - log M+ 8.059 log2 a (4.21)

v g

The above equations beginning with Eq. (4.17) are called the

Hatch-Choate equations, and can be very easily applied to a specific

distribution to obtain any of the various statistical parameters [4.3].
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4,2.2 Graphical Determination of the Geometric Mean Diameter and

Standard Deviation

If the distribution curve for a group of particles follows

fairly well the distribution given by Eq. (4.14), the plot on a log

probability grid of particle size versus cumulative percentages (or

fractions) less than (or greater than) a specific size results in a

straight line.

On this plot the size corresponding to 50% is the geometric

mean diameter M. Likewise the value of the geometric standard devia-

tion a can be related to the sizes at 84.13%, 50%, and 15.87% as fol-
g

lows:

84.13 size 5 size
o - 50ý size 15.87W size (4.22)

4.2.3 Particle Size Measurements Using Sieves

The above indicated procedure would be quite simple to apply

if it were known what the number of particles are in each size category.

Unfortunately, this is not the case with sand vhen the segregation meth-

od is carried out by means of sieving. When sieving is used the results

are given in terms of percent passing (or retained) by weight and not

number.

If weight percentages are used and the plot is made on the

log probability curve the result will still plot as a straight line if

the distribution follows Eq. (4.14).

On this weight plot we define the median and standard devia-

tion as
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M'- 50% size

(4.23)
84.13% 50% size

g 50 15.87% size

It can be shown [4.1] that these values are related to M and

a byg

0U - ag g

log M - log M' - 6.908 log2 a (4.24)

Hence the statistical diameters of interest can be obtained as

log d = log M' - 5.757 log2 0 (4.25)n 8

log d' a log M' - 3.454 log2 a (4.26)v g

log d' - log M' - 4.605 log2 a (4.27)a g

log d U log M' - 1.151 log2 a (4.28)iv 8

In summary it should be noted that the items of interest in

determining only the surface area for a quantity of particles do not in-

clude all of the statistical diameters given in the above discussion.

Since d., is a measure of the surface area per unit weight it is the

only diameter of interest for this study. The other quantities are in-

cluded only for completeness.

The procedure for determining the surface area per unit volume

of a material is to make a weight plot on a log probability graph and

from it determine the median and standard deviation according to Eqs.

(4.23). From this information d.y can be obtained using Eq. (4.28).

The surface area per unit volume S. and the surface area per unit weight

S are thenV
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6 (4.29)
ov

s Pd 6 (4-30)
sv

Since Eq. (4.29) relates to the volume of the actual solids,

it can be related to the volume of the loose material by proper use of

the void ratio e of the material.

4.2.4 Energy - New Surface Area Relationship

In recent years rather extensive studies [4.4 - 4.12] have been

carried out to determine the energy required to create new surface area

when certain solids are crushed. These studies have been carried out on

such materials as quartz, glass, florite, halite, and labradorite. The

materials were subjected to both static loads and also dynamic effects

created by dropping weights on the material. Very closely controlled

measurements were carried out to determine how much of the energy input

was actually used in the crushing of the solids.

Considerations were given to temperature changes, deformations

of the loading apparatus and any other significant energy absorbing mech-

anisms. In general, it was assumed that the materials did not undergo

plastic deformation before crushing, but only exhibited elastic effects

up to the point of fracture. It was felt that this assumption was Justi-

fied for the materials noted above, since under normal temperature condi-

tions they have little ductility.

In order to determine the surface area of the materials, stulies

were first carried out using methods of permeametry as discussed in N4.1].
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This is done by investigating the resistance offered to a flowing fluid

by packed particleb in accordance with the flow laws of D'Arcy. In some

cases the fluid used was water; however, for smaller particles the use

of air in place of a fluid is advantageous. The permeability method for

measuring surface area has the advantage of being a relatively simple

procedure to carry out; however, it has the disadvantage that it mea-

sures only the outside surface of a solid. Such things as cracks, fis-

sures, and pores of microscopic and submicroscopic sizes are not de-

tected by this method.

In view of the above, further studies in this series used gas

adsorption measurements to determine the surface area of the solids.

This technique is also discussed in [4.1] and is based on the idea that

the surface molecules of a solid are bound on one side to inner molecules

but are incompletely attached on the outside. In order to satisfy the

resulting unbalance of atomic and molecular forces, the surface molecules

attract gas, vapor, or liquid molecules. If the molecules attracted are

those of a gas, the phenomenon is known as gas adsorption. It is gen-

erally felt that gas adsorption measurements provide the best means cur-

rently available for determining total surface area of a solid.

In simple terminology, gas adsorption techniques involve a de-

termination of the quantity of a gas necessary to form a molecular layer

on the surface to be measured. The number of molecules required to form

this layer may be evaluated, and since the area occupied by each molecule

is known (or may be estimated), the surface area of the material may be

calculated.

These basic techniques have been applied to the crushing of

single particles as well as arrays of particles for some of the materials
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noted above [4.4 - 4.12]. Some variations were made in the loading tech-

niques with dynamic as well as static applications. Two graphs summariz-

ing some of the significant data related to the behavior of quartz were

taken from [4.12] and are given as Figs. 4.1 and 4.2.

From these results it can be seen that the new area per work

input was measured as about 15.1 cm2/kg cm in single particle crushing

compared with about 13.8 cm2 /kg cm for multiple particle crushing. The

higher energy required to crush a bed of particles has been attributed

to the friction energy losses which occur when a group of particles is

compressed.

For the purpose of this study a value of 13.8 cm2 /kg cm or

2.46 in 2 /lb:in. has been used and is considered fairly representative

of the behavior of sand as well as quartz. Unfortunately, there are no

data available on sand.

4.2.5 Analysis of A Grain Size Distribution Curve For Sand

The concepts discussed in the previous sections have been

applied to determine the energy absorbed througb the crushing of sand

when subjected to large pressures. Unfortunately, there are little data

available in the literature which can be utilized for correlation pur-

poses and to date, the most reliable results are those shown in Fig. 4.3

which were taken from [4.13]. A similar set of data is also reported

in [4.14].

Fig. 4.3 gives the changes in the grain size distribution curves

for well-rounded 20-40 Ottawa sand when subjected to various ranges of

pressure in a condition of one dimensional compression. The results of

an analysis of the.edata are given in Table 4.1 and are plotted in Fig.

4.4.
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The results in Table 4.1 were computed by the following pro-

cedure. In general, an evaluation was made only of that percent of mate-

rial which deviated from the original grain size distribution curve.

For example, at the 1000 psi range only about 3 percent of the material

was affected, while at 40,000 psi about 88 percent was affected. Even

in these percentages not all particles were crushed, but certain statis-

tical average diameters were changed in this group. An investigation

was made of the distribution curve of these altered percentages as shown

in Figs. 4.5 - 4.8 and the specific diameter was determined for this

group both before and after crushing from Eq. (4.28). From these diam-

eters a determination of the increase in surface area per volume was

determined from Eq. (4.29). This increase was converted to energy from

the constant 2.46 in 2/# as discussed in Section 4.2.4. These calcula-

tions yield the energy per volume of solid material considered in the

percentages altered. These values were converted back to energy per

total volume of loose material assuming the void ratio to be 0.60.

It is shown on Fig. 4.4 that after the pressure reaches some

2,000-3,000 psi, the energy absorbed due to crushing seems to be linearly

related to the pressure.

This is particularly interesting since crushing begins to have

a pronounced effect on the sand behavior at about this pressure even

though some particles begin to fail in the region of 500 to 1000 psi.

From these meager data it appears that the rate of change of energy to

pressure is constant and is approximately

1 iA/iO : 0.01 jin/in3
97 #/in 2 #/in 2
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Unfortunately, no other data are available which will substantiate this

work. Likewise, the grain size distribution curves in Fig. 4.3 are very

likely average curves for many tests. Hence this study must be viewed

with some question and considered as indicating only a qualitative trend

until further experimental results can be obtained.

4.3 Stress-Strain Behavior of Sand After Crushing Commences

4.3.1 Experimental Results

The statistical study carried out in Section 4.2 indicates

that in the pressure region after grain crushing begins, the energy

absorbed by sand due to crushing in linearly related to the stress. It

was pointed out that this energy is only that due to particle crushing

and does not include the compaction effect.

Whether these two phenomena are separable effects remains to

be determined; however, they are distinctly different energy absorbing

mechanisms. One is associated with the breakage of the molecular bonds

as smaller particles are formed from larger ones. The other effect is

the energy associated with the settlement and compaction due to a change

in the size distribution of the particles which results in an increased

density.

In Section 4.2 it was shown that the breakage of the particles

seems to follow a random pattern. If it is assumed that the newly created

fine particles are transported to voids in the medium in a similar ran-

dom pattern, it would seem plausible that the total energy absorbed due

to crushing might also be linearly related to the stress.

In order to investigate this hypothesis, let us study some ex-

perimental stress-strain curves for sand in one dimensional compression.

Figure 4.9 sh~ve a qualitative stress-strain curve for sand. If the grains
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of sand do not crush the stress-strain curve will not be concave down-

ward at B, but will continue to be concave upward. Since crushing does

occur, the curve changes in its shape. If the loading curve Is trans-

lated laterally by a strain of e1 until it cuts the crushed stress-strain

curve at a stress a,, the area A, between the original and the translated

curve is the energy absorbed by the sand due to crushing. In the same

way the energy absorbed due to crushing at some stress a2 is the cumula-

tive area A2 noted in Fig. 4.9.

Figures 4.10 - 4.14 give stress-strain curves from some tests

on 20-40 Ottawa Sand carried out by MIT [4.13] where a steel chamber was

used to restrict the lateral strains. A logarithmic plot of these same

stress-strain curves in Fig. 4.15 shows that prior to crushing, the stress

is related to some power of the strain usually between 1.3 and 1.8 and

that a value of 1.5 is a fairly good average. The theory discussed in

Chapter 3 for a face centered array of spheres predicts this power to

be 1.5.

From Fig. 4.5 it is an easy matter to extrapolate the stress-

strain behavior which would occur if crushing did not take place. This

extrapolated non-crushing curve is then translated along the strain axis

to determine where it crosses the true curve in order to determine the

energ absorbed due to crushing.

Figure 4.16 shows the stress-strain curve of Fig. 4.10 with the

translated curves extrapolated from the precrushing data. The energy ab-

sorbed due to crushing was then determined by planimetering the cumulative

area under the stress-strain curve corresponding to a particular stress.

A plot of the energy absorbed due to crushing is given in

Fig. 4.17 for the stress-strain curve in Fig. 4.16. The energ absorbed
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due to crushing appears to be linearly related to the pressure for a

large range in pressures. Similar studies were made for the stress-

strain curves given as Figs. 4.10 - 4.14 and a plot of the crushing en-

ergy absorbed versus the stress is also given in Fig. 4.17. There is a

definite trend in this behavior until the stresses become quite large.

Hence it can be concluded from the meager data available that there ap-

pears to be a linear relationship between stress and the energy absorbed

due to crushing. Further study needs to be carried out on this work as

more data become available; however, these preliminary investigations

are encouraging.

4.3.2 Theoretical Stress-Strain Curve in the Crushing Region

As ýwas discussed in the previous section, there is experimental

evidence to support the hypothesis that the energy absorbed due to crush-

ing is linearly related to the stress. Slailarily, a study of the stress-

strain curves given in Figs. 4.10 - 4.14 as well as the experimental re-

sults carried out on this study and presented in Chapter 5 indicate that

the stress prior to crushing is related to some exponent of the strain.

Figure 4.18a shows a qualitative stress-strain curve for sand

with a discontinuity at ac the crushing stress. This stress ac is, of

course, not a well-defined point for a real material; however, it can be

determined within a reasonable range. Let the stress a prior to crush-

ing be expressed as

a - (I..l)

where e is the strain and Q and P are experimental constants.

Likewise, let the stress after crushing begins be a1 , a func-

tion of the strain. Since the energy absorbed due to crushing appears

to be linearly related to the stress we have from Fig. 4.18b.
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do (4.32)
dE

where E is the energy and 7 is an experimental constant. But the incre-

ment in energy dE is also the incrment In area under the stress-strain

curve as shown by dA on Fig. 4 .l8a. Also, since the sides of dA are

assmied to be a parallel

dA a q1de (4.33)

Since from (4-.32)

(4.34)

there results from (4.33) and (4.31)

do- ade 
(4.35)7 1

or

do1
--- 7de (4.36)
01

Integrating Eq. (4.36) yields the exponential result

Au 1 6 (4.37)
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where A is a constant of integration. This constant can be evaluated

from the condition that at the crushing stress ao the strain is e c

Hence we obtain finally

Y= a e c) (4. 38)

Equation (4.38) satisfies the condition that the energy ab-

sorbed due to crushing is linearly related to the stress. The constant

7 can be obtained from curves similar to those given in Fig. 4.18.

Hence analytical expressions for a one dimensional stress-

strain curve take the following form

a = CZE prior to crushing

C(4..39)
a = aceYCE "E C) after crushing

Equation (4.38) is independent of the stress-strain behavior

prior to crushing and is only contingent on the linear energy versus the

increment of stress after crushing. Hence, Eq. (4.38) may not be lim-

ited to only one dimensional compression, but may be also applicable to

other states of stress.

4.4 Determination of the Stresses at Which Grain Crushing Occurs

The average stress for crushing depends on many things includ-

ing the initial void ratio of the medium, the angularity of the parti-

cles, the duration of loading, and the inherent strength of the mineral

which composes the grains.

For the one dimensional stress-strain curve of a given material,

the effect of particle breakage appears to be dependent to a large extent
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on the initial void ratio of the medium. This statement is substantiated

in Fig. 4.19 where the strains of Figs. 4.10 - 4.14 have been "normalized"

using the strain at 20,000 psi as 100% strain. These data show that

there is a general trend for sand with the higher initial void ratios to

crush at lower levels of stress. This phenomenon is explainable because

at a high initial void ratio there are very few contacts per unit volume,

which means that for a given average stress the contact stresses are

higher in a sand with a high void ratio than for a sand with a low void

ratio. Further study needs to be carried out on the determination of the

crushing stress of sand and how it is affected by particle sizes and ar-

rangements.
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CHAPTER 5

EXPERIMENTAL PROGRAM

5.1 Introduction

An experimental program for the purpose of measuring the pro-

perties of real soils in one dimensional compression has been an integral

part of the overall efforts of this research study. The experimental re-

sults from these tests serve several purposes:

1. The basic phenomena observed in the tests can be compared

with the conclusions drawn from theoretical analyses of idealized models

which are assumed to represent soil.

2. The energy absorbing capacity of soils may be measured by

means of cyclic loading.

3. The various energy absorbing mechanisms may be observed

for a given soil at different pressure levels in order to determine the

stress ranges where each mechanism predominates.

4. The stress-strain curves obtained may be used to study one

dimensional wave propagation through the particular soil media tested.

5. The lateral stress a H which results under conditions of

zero lateral strain can be measured with the ttxperimental apparatus.

6. The effect of lateral strain on the principal stress ratio

can be measured by allowing a given strain in the horizontal direction

and observing the change in a /V, where aV is the vertical stress.

7. An effective Poisson's ratio for soil in one dimensional

compression can be evaluated from the experimental data on aU/aV by the

relationship

V (5.1)
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A device was designed and built to investigate the one dimen-

sional behavior of sand in the high pressure regions. The apparatus

can measure the lateral stress under conditions of zero lateral strain,

and provides one of the best means yet developed for attaining the

condition of "zero" lateral strain. Previous investigators have gener-

ally assumed that the effects of small lateral strains are negligible,

particularly when the sample is enclosed in steel rings. Research by

Speer [5.1], which was recently pointed out by two of the authors [5.2],

shows that lateral motion significantly affects the ratio of V"

The results of Speers's research is presented in graphical form in Fig.

5.1 and shows that a lateral displacement of 4 x 10-6 inches will cause

a 10% reduction in the value of a ¥/Ov. Since Speer's work was with a

sand sample 7 5/8 inches in diameter, the above diameter change corre-

sponds to a unit strain of approximately .5 x 10"6 in./in. It is doubt-

ful to the writers that Speer really achieved an accuracy of + 1 x 10-6

in./in. since sma.l temperature fluctuations would cause minor varia-

tions of at least that magnitude in the strain gage readings. However,

his work does in general point out that the ratio of an/V is very sensi-

tive to lateral movements. This phenomena had already been observed by

Terzaghi as early as 1934 in connection with his "Large Retaining Wall

Tests" at MIT 15.3]. Terzaghi concluded that an outward movement of the

wall of .0007 h in the case of a well compacted dense sand was enough

to fully mobilize the shear strength or, in other words, reduce the
/ l-s i-9

ratio of a a_ = K to K - - ." This outward movement corresponds
a/V A - +sin(P

approximately to a lateral strain of about 12 x 10"4 in./in. Thus for

a truly one dimensional test, whereby one also wishes to measure the

magnitude of the lateral stresses which are concomitant with the vertical
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load, it is extremely important to closely control the lateral displace-

ments. In fact, preliminary calculations revealed that an extremely

thick walled cylinder subjected to an internal pressure of 7,500 psi

(which is an approximation to the lateral soil pressure due to a ver-

tical load of 15,000 psi) would experience a radial strain of 3.25 x

10-4 in./in. if the specimen were 7 inches in diameter and the contain-

ing cylinder was assumed to have an infinite external radius. This

strain is of the same order of magnitude as the tolerable strains listed

by Speer and Terzaghi. Thus, in order to study one dimensional com-

pression, a new experimental apparatus had to be designed which would

restrict the lateral deformations. The apparatus developed on this

program is discussed in the following sections.

5.2 Experimental Apparatus

5.2.1 Description of the Apparatus

An experimental apparatus was designed to determine the stress-

strain relations for soil under one dimensional compression and to mea-

sure the lateral stress necessary to completely restrain the sample. This

apparatus shown schematically in Fig. 5.2 consists essentially of a thin

steel ring which contains a soil sample. The ring is surrounded by an

annular space filled vith oil which communicates freely with hydraulic

jacks. The flexible ring and oil space are enclosed in a thick hollow

cylinder bolted to the baseplate in order to withstand the high fluid

pressures.

The principle upon which the device is based is relatively

simple. As the vertical load is applied by the testing head there are

lateral pressures built up in the sand which tend to increase the diame-

ter of the thin steel ring. Any slight increase in diameter of the ring
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is immediately indicated by the strain gages mounted on the flexible

ring as shown in Figs. 5.2 and 5.3. In order to keep the lateral

strains zero, the oil pressure is modified with changes in the verti-

cal load in such a manner that the strain indicator remains balanced

at all times during the test. When the strain indicator remains bal-

anced there are no lateral strains and the oil pressure is equal to

the lateral soil pressure acting against the side of the container.

The apparatus consists of the following four basic elements:

(1) A thin steel ring monitored with strain gages (Fig. 5.3a).

(2) A baseplate (Part B, Fig. 5.2).

(3) A thick walled cylinder (Part A, Fig. 5.2).

(4) A testing head.

The testing head and the thin steel ring contain the essential

sensing devices for making the desired measurements and are discussed in

the following sections.

5.2.2 Fabrication and Calibration of the Strain Gages on the Steel

Four Budd Metalfilm Strain Gages (Type C6-1161) were mounted

0at the mid-height of the steel ring at 90 intervals and connected in

series as shown in Fig. 5.3. In this arrangement, the strains sensed

by the four different gages are averaged since the change in resistance

balanced by the indicator is the sum of the changes in all four gages.

The gages are "foil" gages with a gage length of one inch and

a grid width of 0.09 inches. Gages of this proportion were chosen in

order to have gages relatively insensitive to axial strains in the ring

arising from friction between the soil and ring, but at the same time

very sensitive to circumferential strains which accompany a diameter

change. These gages worked very well when the axis of the one inch gage
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length was aligned perpendicular to the axis of the ring. These gages

were also very convenient because they are extremely thin and flat, mak-

ing them rather insensitive to the all around pressure of the oil in

which they are submerged during test conditions. Nevertheless, the

effect of the high oil pressure on the gages could not be assumed to

be negligible. The gages had to be calibrated for these effects.

The apparatus is assembled for calibration as shown in Fig.

5.4. The significant feature of this assembly is that the lower "0"

ring between the bottom of the steel ring and the baseplate has been

removed so that the oil in the annular space can communicate freely

with the oil inside of the sample chamber. A steel plug one inch thick

is also inserted into the sample chamber to confine the oil and a test-

ing head is lowered flush with the top of the plug to supply a reaction

of sufficient magnitude to keep the plug in place during calibration.

The gages were calibrated by increasing the oil pressure in

increments up to 2,500 psi. Since the "0" ring at the bottom of the

steel ring was omitted, the oil pressure in the annular space was equal

to the pressure in the sample chamber, thus giving zero net pressure

differential across the ring and no circumferential stresses or strains.

Hence any change in gage reading is due to the effects of the all around

oil pressure on the gages. This calibration procedure was conducted

several times and the calibration curve obtained is shown in Fig. 5.5.

Tbe curve was reproducible within + 4 x 10-6 in./in. and the pressure

effect amounts to 7 x 10-6 in./in. per 500 psi of oil pressure. Compen-

sation for these pressure effects was made when the tests were conducted

on sands.

After the calibration of the inner diaphragm was completed,

the device was modified for testing by disassembling the apparatus and



-108-

and inserting the "0" ring betveen the bottom of the steel ring and the

baseplate to prevent leakage of oil from the annular space into the sam-

ple chamber. The device was then reassembled as shown in Fig. 5.2 for

testing.

5.2.3 Description of the Testing Head

The load was applied to the soil sample by means of a heavy,

internally stiffened piston, mounted in a 120,000 lb. Baldwin hydraulic

testing machine (Fig. 5.3b). The testing head is 6.800 inches in diame-

ter and 8.125 inches high. The device consists of two rigid steel plates

which are welded on two concentric steel cylinders as shown in Fig. 5.6.

This figure also shows the manner in which a dynamometer is incorporated

into the device to measure the pressure over the center square inch of

the loaded area. This feature enables one to check the load on the cen-

ter square inch against the average load over the entire area. The pis-

ton and the dynamometer were designed with approximately the same rela-

tive stiffness in order to maintain a uniform deflection of the specimen

across the face of the loading device as the-sample is compressed.

The vertical displacement of the sand during compression was

measured by two Ames Dials mounted at 1800 to each other on the loading

piston as shown in Fig. 5.7. The dials measure the relative displace-

ment between the moving piston and. the thick walled cylinder designated

as Part A in Fig. 5.2. This measured relative displacement is actually

the sum of the vertical displacement of the soil plus the strain in the

testing head from the surface of loading to the point where the dials

are connected. The strains in the head were so small compared to the

strains in the soil that they were neglected and the measurement was

taken to represent the vertical displacement of the soil sample. The
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dials are accurate to 1/10,000 of an inch and have a 1" travel. When

the two dials read differently, the average reading of the two dials

was taken as the vertical displacement of the soil.

5.2.4 Proportions of Test Specimen

The proportions of the test specimen, 7 inches in diameter by

2 inches high, were selected to minimize the effects of friction between

the sand and the steel ring. The theoretical basis for the above state-

ment is presented in the following analysis from 15.5].

Let us consider a confining ring of radius R and height H as

shown in Fig. 5.8. At any arbitrary depth z below the surface loaded

by the force P, the vertical force supported by the soil is designated

as QZ" The force QZ may be expressed in terms of the shearing stress

IZ and the applied load P as:

z

SP -f 2*RTdz (5.2)

The shearing stress is also related to QZ by

"Qz K f (5.3)

where A is the area of the sample, Ko is the ratio of the horizontal to

vertical stress and f is the coefficient of friction between the soil

and the ring.

Substituting Eq. (5.3) into Eq. (5.2) yields

z

Q .P- 2R K f dz(5.4)
00
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Differentiating both sides of Eq. (5.4) and rearranging results in

dQZ -29RK= f dz (5.5)
S A

Integrating the above equation between the appropriate limits we obtain:

QHH[j 21af z] Q, -2xRK f.11
IIn A= = In_ A (5.6)

p 0

Rearranging Eq. (5.6) we obtain:

-291KfE -2KIfH

A R
Qý = Pe -Pe (5.7)

-2K fH
0

Equation (5.7) implies that if e R approaches 1, then Q= P, and

the frictional effects become negligible. This relationship shows that

the R/H ratio should be as large as possible to reduce the effect of

friction. In fact, increasing the R/H ratio by a factor of 2 has the

same effect as reducing the coefficient of friction by 50%. The pre-

sent diameter to height ratio of 3.5 used in this test is considered

sufficiently large to minimize the frictionfil effects, but on future

tests it would be desirable to vary the height of the sample in order

to investigate the effect of this ratio. A practical limit is reached,

however, in reducing the height of the sample since the height of the

sample influenceL the accuracy of the vertical strain measurement. If

the sample becomes too thin, the increments in the displacements can

become too small for the Ames dials to sense, especially in the higher

pressure regions where the constrained modulus of sand approaches 300,000

psi.
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5.3 Description of Tests

5.3.1 General

A series of one dimensional compression tests with lateral

earth pressure measurement vas conducted on a dry sand. The sand was

a well rounded, coarse, uniform, silica sand from Le Suer, Minnesota.

The sand is very similar to standard Ottawa sand in all respects except

that only the sizes between the No. 10 and No. 20 sieves are present

in this material. Relative density tests on this material showed that

the void ratios for the loosest and densest states are e i .675

and emi = .455, respectively. The loosest state was obtained by pour-

ing the sand in a container of known volume through a glass funnel to

prevent the sand from falling. The densest state was obtained by put-

ting the sand in the same container in 1/2" layers and tapping the

sides with a mallet until it appeared as if the surface was no longer

settling.

The initial void ratio, the strain rate and the pressure ranges

of cyclic loading were varied in this series of tests. The variation

of these parameters made possible a study of the following effects:

(1) The influence of relative density on Ko.

(2) The influence of strain rate on KO.

(3) The relationship between the overconsolidation ratio and

K.
0

(4) The effect of initial void ratio on the stress-strain curve.

(5) The effect of initial void ratio on energy dissipation.

(6) The effect of strain rate on the stress-strain curve.

(7) The effect of pressure level on energy dissipation due to

cyclic loading.
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5.3.2 Preparation of Test Specimens

When preparing the test specimens it is extremely important

to be able to reproduce the same initial void ratio for all specimens,

since the relative density significantly affects the stress deformation

properties of sand. Each sample of sand used in the tests consisted of

2,000 grams of oven-dry material; thus the volume of the sand solids

was constant for each test. Since the void ratio e is by definition
V

, where V is the volume of the voids and V is the volume of the

soil solids, it may also be written - where V represents the total

volume of the sample. Since Vs was constant for all the tests, the

void ratio was determined by controlling the total volume, V. The sam-

ple was cylindrically shaped so this was easily accomplished by control-

ling the height of the sample.

Each test specimen vas prepared by placing 2,000 grams of

oven-dry sand into the sample chamber and inserting a metal plug into

the chamber above the sand. This steel plug fits into the chamber as

shown in Fig. 5.4. A vibrator was then set on the metal plug and the

sand was vibrated until the plug settled down to a predetermined mark

fixing the height of the sample. This method of sample preparation has

proved to be rather simple and convenient and the test results thus far

indicate that very good reproducibility has been achieved by the employ-

ment of this technique.

5.4, Test Results

5.4.1 Axial Stress-Strain Relationships

The axial stress-strain curves for each of the eleven tests

are shown in Figs. 5.9 through 5.19. The curves show the entire history

of loading and unloading for all tests including those tests where the

samples were subjected to several cycles of load.
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The stress-strain curves in general for all the tests are non-

linear curves which are concave upward on both the loading and unloading

portions. The non-linearity of the curves demonstrates the well known

fact that the stiffness of a given sand is highly dependent upon stress

level. This stiffness in the case of one dimensional compression is usu-

ally designated as the "Constrained Modulus." The variation of the con-

strained tangent modulus with the vertica.l stress for the initial loading

in tests 3, 4, 9, and 13 are shown in Figs. 5.20 and 5.21. These curves

also show the effect of relative density on the constrained modulus.

Specimens 3 and 4 had an initial void ratio of 0.62 and had a constrained

modulus of 200,000 psi at a stress of 2,500 psi; whereas specimens 9 and

13 had an initial void ratio of 0.54 and a constrained modulus of 280,000

at 2,500 psi vertical stress. Figure 5.22 shows the variation of con-

strained tangent modulus with the vertical stress for initial loading on

all tests with an initial void ratio of 0.54.

The stress-strain curves for tests 3 and 4 are interesting be-

cause in a stress range of 2,600 - 3,000 psi the initial loading curves

show a tendency for the curve to be concave downward. Crushing of the

grains could be heard at this stress level and it is possible that crush-

ing and rearrangement were responsible for this apparent decrease in rig-

idity. This tendency toward a decreasing modulus in the 2,800 psi range

was not observed in the other tests even though the crushing could be

heard, and crushed angular particles were observed after testing. The

primary reason that tests 3 and 4 manifested the above phenomenen is be-

cause the sample for these tests had an initial void ratio of 0.62; whereas

all the other specimens had an initial void ratio of 0.54. The sand with

the higher void ratio is free to rearrange as a small amount of crushing
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occurs, and the strains from this rearrangement are reflected in a decreas-

ing modulus as in tests 3 and 4. The sands with a lower void ratio, how-

ever, are not free to rearrange to a great degree when crushing initiates

and thus no significant strains due to rearrangement occur. Even the

denser sands will show a decreasing modulus at some stage due to crushing,

but in general, one would expect crushing to occur at a higher average

stress level in a dense sand than in a loose sand. A dense sand has more

contact points per unit volume than a loose sand and thus for the same

average applied stress, the loose sand has higher grain to grain contact

stresses than the dense sand. Therefore, the loose sand begins crushing

at a lower stress than the dense sand. The phenomena discussed above is

illustrated very well in Fig. 4.19 of this report.

The loading and subsequent unloading of the sample showed that

on the average about 75% of the axial strain was recoverable. This strain

was probably the result of elastic deformations at the points of contact.

The non-recoverable portion of the strains most definitely was due to ir-

reversible rearrangement of grains. The significant portion of the re-

arrangement, however, takes place on the first cycle of loading since sub-

sequent cycles are nearly reproducible and show only a slight tendency to

rearrange further. These phenomena are illustrated fairly well by test 8.

The stress-strain data from the tests are presented on graphs of

log10 stress versus loglo strain in Figs. 5.23 through 5.33. The stress-

strain data plot is a straight line on these graphs which means that the

axial stress may be expressed in terms of the axial strain by

= zz (5.8)
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The above expression may also be written as:

log1 0 
6 Z = log1 0 K + n log1o0z (5.9)

Thus from Eq. (5.9) it is apparent that the parameter n is the recipro-

cal of the slope as measured from the graphs shown and K is the value of

the strain at which the straight line intersects the log 1 0 strain axis.

The values of n range from 0.38 to 0.53 for these tests as compared to the

value of 2/3 which was predicted for n from the theoretical analysis pre-

sented in Chapter 3. The results do show, however, that an exponential

relationship does occur as predicted by theory, but the value of n from

tests seems to be consistently less than 2/3.

The theory from Chapter 3 also predicted a relationship between

the constrained tangent modulus, Mc, and the vertical stress, a.,, as

do 1/3

-zo (5.10)
c d• 1 zzz z

where C1 is a constant. Figure 5.34 shows the variation of log Mc and

log a for all tests on samples with an initial void ratio of 0.54.zz

Since the relationship is a straight line the actual relationship be-

tween the constrained tangent modulus and the vertical stress is

M = Co k (5.11)c zz

where k is the slope of the line. The value of k for this set of experi-

ments is 1/2 whereas the theory from Chapter 3 predicted that k should be

1/3.

The small number of tests conducted thus far are not sufficient

to make any definite conclusions about the effect of strain rate on the
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stress-strain curves; however, there appears to be a definite trend even

though the range of strain rate has been relatively small. The constrain-

ed moduli, in the 2,500 - 3,000 psi vertical stress range, for samples

with an initial void ratio of 0.54 were compared for loading rates vary-

ing from 0.005 to 0.040 in./min. The results are shown below.

Testing Rate Constrained Modulus
in./mrin. psi

0.005 262,500

0.010 262,500

0.020 269,600

0. 040 270,300

Note: Controlled stress test, i.e. test #10 245,000

The constrained modulus appears to increase slightly with in-

creasing strain rate, but in the range of strain rates considered, this

effect iz not of great importance. In fact, a slight change in initial

void ratio is much more effective in changing the constrained modulus

than the strain rate.

5.4.2 The Coefficient of Earth Pressure at Rest

The results of the lateral earth pressure measurements for the

initial loading of each specimen are shown in Figs. 5.35 through 5.45.

The lateral pressure is plotted as ordinate and the vertical stress as

abscissa. The experimental data plot in a straight line for all curves

and K0, the coefficient of earth pressure at rest, is numerically equal

to the slope of the straight line.

The influence of relative density on K can be seen by compar-

ing K for the samples having an initial void ratio of 0.62 with the

sample having an initial void ratio of 0.54. The samples with the high
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void ratio had measured values of K ranging from 0.390 to 0.415; whereas

the denser samples tested at the same rate of loading as the above samples

had K values from 0.340 to 0.360. Thus K appears to decrease as the

relative density of the sand increases. This variation was expected since

it is vell known that the angle of internal friction increases as the

relative density increases. Other investigators such as Jaky [5.4] have

shown that the value of K decreases as the angle of internal friction0

increases for a soil with an over-consolidation ratio of 1.

The value of K for a soil of constant initial void ratio also0

varies slightly with strain rate. The general trend of the data shows

that K decreases with increasing strain rate. Tests on the dense sand0

(e - 0.54) showed that K varied from 0.375 for a consolidation type

test as in test 10 to as low as 0.330 for the fastest loading rate of

0.004 in./min. The values of K for the intermediate loading rates of0

0.01 and 0.02 in./min. were 0.350 and 0.335, respectively.

Thus far, the discussion of the coefficient of lateral earth

pressure at rest has been restricted to that portion of the stress-strain

curve where the ratio of the maximum previous stress to the existing stress

on the sand is unity (i.e., Max. prevsous stress _ Overconsolidation ratio =Present stress

OCR - 1). In this region the coefficient of earth pressure at rest is a

constant, as predicted by the theory of Chapter 3, but if the specimen is

unloaded from some maximum pressure, then the OCR becomes greater than 1

and the value of K does not remain constant as unloading progresses. The0

variation of K with OCR is illustrated in Fig. 5.46 for tests 3 and 4.

This graph clearly shows that K increases with increasing OCR. The maxi-

mum value of K measured during unloading was 2.0 and it appeared to be

still increasing. If measurements could be more accurately obtained in

I
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the final stages of unloading where the pressures are very low, it would

probably be found that the values of K would ultimately approach the

coefficient of passive earth pressure.

Figures 5.47 and 5.48 show the variation of lateral earth pres-

sure with vertical stress for 1 1/2 cycles of loading in tests 12 and 13.

These curves show that with cyclic loading the coefficient of lateral

earth pressure can gradually be built up with each cycle of load. Ob-

serve the data for test 13 for example at points a and b. The value of--

K at a is higher than at b even though the overconsolidation ratio is0

the same at these two points. Thus, the value of K for a given sand is0

not only a function of stress history as expressed by the OCR, but it

also depends on the number of preceding cycles. Further tests are ex-

pected to indicate how much K can be increased at a given OCR by cyclic0

loading.

5.4.3 Energy Absorption

The energy absorption characteristic of the dry sand were in-

vestigated by means of cyclic loading. In general the first cycle was

conducted by loading to a maximum pressure of 3,290 psi and unloading

to zero. The deformations in the first cycle were only about 75% re-

coverable due to the fact that rearrangement of the grains caused ir-

recoverable strains. The sample was then loaded to some lower stress

level, usually 1,100 psi, and then unloaded. It was found generally that

the second cycle deformations were almost 100% recoverable, but energy

was still being lost because the loading and unloading paths were differ-

ent. If the second cycle was followed by a third cycle identical to the

second (such as in test 3, 5, 6, 7, and 8), it was found that the third

cycle traversed essentially the same loop with very little irrecoverable
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strain but that a significant amount of energy was still being dissipated

due to the difference between the loading and unloading paths. In fact,

these loops were so nearly identical that for tests 3, 5 and 7 the sec-

ond and third cycles traversed exactly the same path and the small loop

shown on the stress-strain curves for these tests actually represents

both the second and third cycles.

The energy lost in hysteresis loops for various tests was

evaluated by computing the area enclosed in the loops traversed in the

second and third cycles of loading. It was found convenient to express

the energy lost as a percentage of the energy input. The results of

these measurements are shown in Table 5.1. In general it was found that

the ratio of energy lost to energy input is practically a constant re-

gardless of the magnitude of vertical stress, and varies between the nar-

row limits of 0.275 to 0.334. For samples which had the same history

of loading, it was found that the samples with the higher initial void

ratios always lost more energy than those with the lower initial void

ratio.

The fact that the energy lost/ energy input ratio has been ob-

served to be fairly constant regardless of the range of stress is signi-

ficant, but this relationship is restricted to the maximum value of ver-

tical stress employed in these tests. At higher stress levels crushing

may be a major factor and thus other mechanisms of energy dissipation

enter into the picture. Further tests into the higher pressure regions

will enable a better determination of the range of pressures for which

this energy ratio is applicable.

The theory of Chapter 3 predicted that the ratio of energy ab-

sorbed to input energy for a hysteresis loop from a stress of zero to any
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stress below the crushing stress should be a constant related to the co-

efficient of friction between grains. Thus the actual measurements are

in agreement with theory because this ratio was observed to be practically

a constant. The laboratory measurements, however, provide another check

on the theory which is quite interesting. The theory predicted that

K(1-f)
K= 1/2(-f) (5.12)

and

zE 2fF -=I+-- (5.13)
1

Since K and !l have both been measured in the laboratory tests•

,he coefficient of friction or more appropriately, the pseudo coefflcient

of friction can be evaluated by two independent calculations for each test.

If the theory is reasonably appropriate the two values of f should be in

good agreement for each test. These calculations were made for each test

and are presented in Table 5.2. Tests 3 and 4do not show good agreement

for the two calculated values of the coefficient of friction. Tests 5, 6,

7, 8, 9, 11, 12, and 13, however, show a very good correlation between the

two independently calculated values of the coefficient of friction. The

latter group of tests had an initial void ratio of 0.54 as compared to 0.62

for tests 3 and 4. Since the theory of Chapter 3 assumes a granular medium

in a dense state, it is not surprising that the tests on sand in the denser

state should give better correlation with the theory than tests as higher

initial void ratios which allows more rearrangement of the grains.
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TABLE 5.1

ENERGY LOSSES FOR REPEATED LOADINGS

Test No. Loop Range Mean Stress Energy Lost
psi psi

3 o - 1100 548 33.4

4 0 - 1100 548 33.1

5 0 - 1100 548 32.8

6 0 - 1100 548 30.2

7 0 - 1100 548 27.9

8 0 - 1100 548 27.5

8 0 - 5290 1647 27.8

9 0 - 1100 5 48 28.7

11 0 - 2195 1099 28.6
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TABLE 5.2

CORRELATION OF f, K0, AND LIE/E1

12 1/2E1Test e 2= K + / E
o 2K+I f

0 (1-1/2 - )E1

3 .62 .12 .20

4 .62 .09 .20

5 .54 .18 .20

6 .54 .16 .18

7 .54 .20 .16

8 .54 .20 .16

9 .54 .19 .17

10 .54 (No Hysteresis loop on this test)

12 .54 .18 .17

12 .54 .18 .14
13 .54 .18 .15
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APPENDIX A

APPLICATION OF THE HERTZ TREORY TO
THE BEHAVIOR OF A GRANULAR MEDIn

A question of paramount importance arises in the development of a

theory of granular media based on the Hertz theory [A.1]. It must first be

concluded that the Hertz theory is valid in the pressure regions of interest

before the theory has any usefullness. In view of this it may be worthwhile

to review the development of the Hertz theory here for the convenience of the

reader and note siinultaneously the fundamental assumptions as they arise.

The derivation given in the following is a summary of the presentation

given by Timoshenko and Goodier [A.2], and the assumptions are discussed by

the writers in relation to applying the results to a gpranular sedim composed

of well rounded quartz sand.

Let us first look at the pressure between two spherical bodies held

in contact by a normal force. In the solution of this problem it is assumed that

at the point of contact these bodies have spherical surfaces with the radii 11

and R2 (Fig. A.1). If there is no pressure between the bodies we have contact

at one point 0. The normal distances from the tangent plane at 0 to points

such as M and N, on a meridian section of the spheres at a very smal distance

r from the axis z 1 and z 2 , can be approximated in the following aanner (Fig. A.2):

z a u tan 0/2 - 1/2 u tan I

z - 1/2 u,. u/t- u/ (A.1)

2T 2 2z a r/2R mbere r *u

Thus in (Fig. A. 1)
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r 2 r 2

z-m j- , amd z - (A.2)
.1 2 2B

7be distance between points N and N is

r 2 (R1 + 12)R

In the particular case of contact between two spheres of equal radius,

R, we have:

r 2 2R r 2/R (A.14)

If the bodies are pressed together along the normal at 0 by a force

P, there vlii be a local deformation near the point of contact producing contact

over a emall surface vith a circular boumdary, called the surface of contact.

Assuming that the radii of curvature R. and R2 are very large in comparison vith

the radius of the boundary of the surface of contact, we can apply, in discussing

local deformation, the results obtained for a point load on a semi-infinite

boumdary. Let v1 denote the displacement due to the local deformation in the

direction z, of a point such as N an the surface of the lower ball (Fig. A.1),

and v 2 denote the s~es displacement in the direction z2 for a point such as N

of the upper ball. If It is assmamd that the tangent plane at 0 remains Imovable

during local compession, then, due to this compression, any tvo points of the

bodies oan the axes z, and a2 at large distances* from 0 vill approach each other

*Such distances that deformations due to the compression at these points can

be neglected.
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by a certain mount a, and the distance between two points such as N and N

will diminish by a - (v1 + v2 ). If the two spheres are of equal radius,

the distance between such points as N and N will diminish by a - 2v. If

finally, due to local compression, the points M and N come inside the surface

of contact" we have

a. r 2 : (l- + R2 ) (A5)
S+ v a + '2 R2

If the spheres have a radius R - - R 2 then we have

a - 2w - 2z - r 2/R

Thus

a - r 2/R
2 (A.6)

at any point r on the surface of contact.

Let us nov consider local deformations. From the condition of symetry

it can be concluded that the intensity of pressure q between the bodies in contact

and the corresponding deformation are symmetrical with respect to the center 0

of the surface of contact. Taking Fig. A. A to represent the surface of contact,

and X as a point on the surface of contact of the lover ball, the displacement

of this point may be found in the folloving manner. For a point load on the surface

of an infinite meditm such as shown in Fig. A.3 , the vertical deflection at a

distance r from the load P Is given as

P 1 - V 2 )
V modlur (Ad7)

where E is Young's modulus and V Is Poisson's ratio for the medium.
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Now let us consider Fig. A.k4 where we have a distributed load q

over the circular area of radius a. We are concerned with the displacement

of point N in relation to the distributed load q. Thus the vertical deflection

v at any point M within the loaded boundary is

1 - V2 ' rgdi A8

where

da - do . d. (A.9)

Thus

vu Vi j1 2) .fqd*ds (A.lO)

Hence if two spherical balls of equal radii R are pressed together,

at some point r the local displacement v becomes

2w r 2 r/R u 2(1. v)j qd*ds (A.11)

The distribution of q must therefore be such that Eq. (A.11) is satisfied. It

will now be shown that this requirement is satisfied by using a pressure distri-

bution of q over the contact surface represented by the ordinates of a hemisphere

of radius a constructed on the surface of contact.

If qo Is the pressure at the center 0 of the surface of contact, then

k
qo a - (A.12)

where k is a constant factor indicating the scale of our representation of the

pressure distribution. Along a chord mn the pressure q varies, as indicated

in Fig. A. 4 by the dotted semicircle.
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Performing the integration along the chord we find

qds .. • A (A. 13)

where A is the area of the semicircle indicated by the dotted line and is equal

to

A &(a2 - r si2 n) (A.14)
2

Substituting Zq. (A.14) into Eq. (A.l1) we rind

2 2) Ir q
rW (a 0 (a 2 - r sn d

. "fz Uo ý a )

or

r 2 qO 1  l(2 - r2 sLn2*) d* (A.15)R a -E;-'

Inteprating Eq. (A.15) yields
r 2 qo (1- V2)r (22-r2)(.6

2-.•" a .E (•2 . (A.16)

Mhis equation will be satisfied for any value of r, and henca ta.e assumed pres-

sure distribution is the correct one if the following relatis.;na exist for the

displacement a and the radius a of the surface of contact beV"N'en two equal radii

spheres:

%qa (1-v 2) qoaT(l-V)

P , (A.17)

and
%BV(l - v) *%mr( )

a" (1 -V 2 ( (A.18)

where i9 is the shear modulus of the spheres.
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If the volume of the pressure diagra, betveen tvo spheres is de-

fined as the normal force N betveen the spheres, then

!0 . Z Ta3
a 3

from vhich ve obtain

% " a2 (A.19)

Combining Eq. (A.19) with Eq. (A.17) and (A.18) yields

N(l - V) (A.20)
ap

a3' RN - V) (A.21)

The radius of contact a mW be eliminated from Eq. (A.20) and (A.21)

to give

a- 2 [3(1 -N"1/3 (A.22)

Equation (A.22) shows that the relative approach of the center of two

spheres is a function of the tvo thirds pover of the contact force.

The normal compliance C is

which may be simplified to

C -U - ) (A.23)2ft
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where a L- given by

3(1 [ N 1/3a = I 8 P(A. 24)

L

There are two key assumptions in the Hertz theory which should be

discussed to justify its use in a theory of granular media.

The first of these is that described by Eqs. (A.1) where it was

assumed that the deviation from a tangent plane is quadratic, i.e.

r 2
2R (A.25)

The exact expression for this is

2
r 1
S2R1 z

2R

or

r 2 [ z (.E)2 + 1 (s)3 +

Hence if is small with respect to 1, the assumption that the higher order

terms can be neglected is quite in order.

The second assumption is of a lover order than the first and re-

quires that the radius of contact be small compared to the sphere radius R.

This assumption is associated with the use of the expression for the deflection

resulting from a point load on an infinite medium, i.e. Equation (A.7). Essentially

what is being assumed is that the curvature of the spheres beyond the contact

area does not affect the stress distributions and deflections at the contacts.

Schematically this assumption implies that the surfaces in contact are two

infinite media with small bumps in them rather than two sphere (Fig. A. 5). Clearly

if the radius of contact is small, the curvature has little effect on the behavior.
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This is particularly true vhen the two contact surfaces are spherical and the

stresses away from the contact area damp out very fast. The two problems

illustrated by (Fig. A. 5) could conceivably be solved and a quantitative

comparison be made; however, the effort would be a major one and the value to

the study at hand is questionable as is seen in the following discussion.

The problem of concern has to do with the use of the Hertz theory

to describe the behavior of a granular medium, namely sand, subjected to an

average applied stress, az, over the surface. Therefore, it is of interest

to determine what limits are to be placed on this stress due to other reasons

such as crushing. In fact it is known that crushing begins in sand compressed

one dimensionally at average stresses on the order of 1000 psi. By the time

the stress reaches 5,000 psi the crushing effect is a major part of the deformation

behavior.

In Section 3.1.1 it was determined that the normal contact force

:-2 w.. related to the radius of contact by Eq. (3.1)

1

L3(1-v) RNZ]3 (A.27)

The normal force, ,12 , was related to the applied force, Pz, by

Eq. ( 3 .48a)

N2 ( f) = P (A.28)

Furthermore it was shown
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that the average stress az is related to P by

PZ

-Z (A.29)
z 8R?

Equations (A.27), (A.28) and (A.29) may be combined to give

1I/3 1- az

(S)3 = (l ) a Z (A.30)

The relationship between a/R and the stress is independent of R.

Representative values of f, v and 4 for quartz which are appli=

cable to sand are

f = 0.15

v = 0.20

S= 6 x 106 psi

Using these values and Eq. (A.30) we obtain the following re-

lations between a/R and a :

zz

(R)3 = .6 z (A.31)

R z

psi

0.031 500

0.039 1,000

0.057 3,000

O.085 10,000

0.10 16,300

Thus we can see that for the stresses of interest (prior to

crushing) where the theory is to be applied, the radius of contact com-

pared to the radius of the sphere will be much less than 0.10. Not

only is this fairly small but it should be remembered that there are
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other assumptions involved in the application of this theory to sand

which may be far worse. In fact, the assumption that sand particles,

even uniformly smooth ones, are spheres is perhaps more questionable

than this one. Microscopic photographs of sand particles show many

types of asperities which naturally cannot be easily considered in this

theory. If the effort warrants it, it may be possible in the future to

extend the theory to include roughness effects by using the recent work

of Coodman [A.31. Such an extension is not warranted at the present in

view of the nonuniformity of sand.

Another effect ignored is that of the tangential forces at the

contacts on the geometry Just outside the contact area. With large con-

tact forces there may exist little outward bumps outside the contact sur-

faces which would have some effect on sliding.

From the above-mentioned, it can be concluded that within the

confines of the expected use of this theory, the assumption that the

Hertz theory is applicable to the behavior of granular materials is cer-

tainly warranted.
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Pressure Variation Of
da _ q Along mn.

inn

Fig. A. 4 PLAN VIEW OF THE CONTACT SURFACE OF
TWO SPE'RES IN HERTZ CONTACT
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Fig. A, 5 CORRELATION BETWEEN SPHERES AND INFINITE
SURFACES IN HERTZ CONTACT
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APPENDIX B

NUMERICAL SOLUTION TO THE EQUATIONS GOVERNING
THE BEHAVIOR OF A GRANULAR MEDIUM HAVING

RESTRICTED lATERAL STRAINS

The general equations governing the behavior of a face centered

array of spheres subjected to a vertical force P and symmetrical lateralz

forces PH have been developed in Section 3.1.1. The resulting equations

including the lateral strain condition were given previously as Eqs. (3.37)

and take the following form:

dN + dT "2 dP
2 2 z

dN 1 + dN2 - dT2  .0- =
-1 2• " 2

C2  C2

dNI ? .R deH

C 1 H

Here the N's and T2 are the normal and tangential contact forces

and the C's and S2 are the corresponding compliances. (Figs. B.1 and B.2).

The radii of the spheres is R and the lateral strain is eH, Let us intro-

duce the dimensionless variables

N N2  T

1 8 AL '2 8 RAl, 2 8 R24

(B.2)

PHPH Pz

R*4, AZ~R

vhere ýL and v are the shear modulus and Poisson's ratio for the spheres.
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Suabstituting Equations (B.2) into Equation (B3.1) yi.3As

dn2 +t 2  = (i.2a)

2 -z =2 dn2  t .0 (B.3b)

dnl+ d2 -d2~V rd 2 - (.

here K depends on t+ 2-1 dn2 as 0on :

2 dt2

a , For tI innreaaln8

2

dn2  1'

d -.p , K- 1 • +)•

(DA)
dn21 dn .3 2  t 2 -113

2 t2 dt 2 2

b. For t 2ecreasing

! < t 1 (3.5)

At 2- F' t

t2 T2 t2 f'2

where t* Is the hjitest value obtained by t2 and Is the valme frc. ~ibiih it is

decreasing.

The strain in the vertical or s direction io given by
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dcz 2 &M2 + ='2'1vY B63n2• 3 _..• ldt -
B

and the stresses in the vertical and horizontal directions are givenj, respectively,

by

IAP

S(B.7)

M(Li)

The problem is nov to determine a solution to the Eqnations(B.3).

These eqmtions are differential equations In term of the infinitesimal

increment• of the forces. One nethod of solution is to Integrate these equtions

exactly vhere euch an Integiati eman be dome. Subh an integration is carried

out Ln Section 3.2 for the case ibere the lateral strain c I Is zero. Unfortwxately

it does not appear that an exact solution can be obtained for other cases,

particularl3y for the mnloading cayle. kBneo, in order to study the behavior of the

medium some other method of solution must be carried out.

Zqiitiosa (B.5) are ideaLlr msuted for rnmerical solution on a digital

camUter. If vs consider the equation not as differential Inements d but as

finite Increments A the equtions bec•me

42-

2oo0A% APB 0

n2, U + 2- [rAt 2 _ 0

There K is given by Equations (B.4i) or (D.5) with dirferences replacing the dit-

ferentials.
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If the Initial conditions are knovn, Equations (B.8) can be used

to trace the behavior of the spheres tbrough a cycle of loading. The vertical

load, Pz, the lateral strain a or the lateral load %1 ma be incremented and

a solution to Equations (B.8) gives the increments vhich occur to the other

forces as a result of these changes. Likevise from these results the increment

to the vertical strain cs my be determined frm Equation (B.6).

It should be noted that Equations (B.8) are non-linear difference

equations because K is•a fuction of n2 and t 2 . Neae, the equations must be

solved by iteration for each load Increment cycle.

It vas also noted In Section 3.2 that these equations have a singularity

at zero. Therefore it Is not possible to obtain azW rational behavior by

starting vith the normal forces at the contacts equal to zero. To offset this

problem we Introduce an Initial hydrostatic stress p0 vhich in turn creates

an initial normal force at the contacts of n0 . As ws shown in Section 3.1.2 this

gives stress-strain and contact force relationships as follows:

co no3  ( .9)

n. 42 Po(.10)

S(B. on )

mhere 3(1-v) 0o

POa 8R 2

3(1-v) N0
no n 22

The addition of this initial stress condition does not alter the

governing Equations (3.8) provided that the total normal contact forces
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used in the comspliance terms and strain equations inclade the hydrostatic

effect. Hence all variables except the tangential forces include the

hydrostatic contribution. The behavior in addition to the initial hydrostatic

effect or the total effect can then be obtained.

In the computation procedure ve rember that the theory is restricted

to that behavior vhere sliding does not occur at the contacts. 7his is re-

flected in the condition that K must be greater than zero. 'hen K becomes

negative (or zero) sliding occurs and the solution is no longer valid.

Furthermore, to speed convergence of the iteration process and to

take care of aW divergence during the computation for one Incrementp a con-

vergemce subroutine vas included in the progrm.

A step by step solution is as follows:

(a) Increment loads and/or strains

(b) Calculate all constants

(e) Calculate dn2 from Equation (B.3d)

(d) Assume values for K and n3 /n 2 on the basis of the previous cycle

(e) Compute dt 2 from a combination of Equation (D.3a) and (B.30)

(f) Determine dn 2 from Equation (B.-a)

dn
(g) Check dnI for greater than or less than 1/f

2

(h) ofu- K from Equations (B.A) or (B.5) depending on the results
of ( If K is negative then stop since the equations are invalid.

n 2(i) compute

(,I) If n I/n2 agree with that assumed in (d), add increments t- total

variables and go on to next cycle

(k) If •, 3 /n•2 & not agree Vith atsu.ed, repeat steps () thro, g

(1) using results of this cycle.
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A flov diagram of the computation sequence is given as Fig. B.3.

In order to study the accuracy of the computer solution and to compare

its results vith a closed form solution, a solution VMS obtained to the one

dimensional problemo (4, a 0). This corresponds to that developed in Section

3.2.1 for vhich an exact solution has been obtained, namely, Equation (3.51).

Figure B. A shovs a comparison of the results obtained from the computer

program with those resulting from Equation (3.51). The accuracy was excellent

and no difference is discernible on a graphical plot. The closeness of the two

results is illustrated by the sample values noted on the figure. Further

work is anticipated on this phase of the program and will be carried out as the

need arises. It is expected that it vill be useful in studying the unloading

phases and those cases vhere some lateral strain is alloved.

I
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Fig. B. I UNIT CUBE OF A FACE CENTERED CUBIC ARRAY
OF EQUAL SPHERES SUBJECTED TO INCREMENTAL
FORCES IN ONE DIMENSIONAL COMPRESSION
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